Advertisement

Metallurgical and Materials Transactions A

, Volume 42, Issue 7, pp 1847–1853 | Cite as

Numerical Determination of Secondary Dendrite Arm Spacing for IN738LC Investment Castings

  • M. M. Franke
  • R. M. Hilbinger
  • C. H. Konrad
  • U. Glatzel
  • R. F. Singer
Article

Abstract

A numerical model was developed to estimate the solidification conditions and the secondary dendrite arm spacing of equiaxed solidified IN738LC investment castings. The model, composed of geometric data, thermophysical properties, and boundary conditions, was verified by a comparison of calculated and measured process temperatures obtained from casting experiments. The computation of the secondary dendrite arm spacing was carried out from temperature gradient G, solidification rate v, and an alloy-specific parameter M, determined by means of an inverse approach. The calculated secondary dendrite arm spacing was found to be in very good agreement with metallographic measurements.

Keywords

Cool Rate Turbine Blade Solidification Rate Solidification Condition Investment Casting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Heckl, R. Rettig, and R.F. Singer: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 202–11.CrossRefGoogle Scholar
  2. 2.
    R. Bürgel: Handbuch Hochtemperatur Werkstofftechnik, 3rd ed.,Vieweg Verlag, Wiesbaden, Germany, 2006, pp. 419–38.Google Scholar
  3. 3.
    R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, United Kingdom, 2006, pp. 1–28.CrossRefGoogle Scholar
  4. 4.
    W. Kurz and D.J. Fisher: Acta Metall., 1981, vol. 29, pp. 11–20.CrossRefGoogle Scholar
  5. 5.
    R. Minichmayr and W. Eichsleder: Giesserei, 2003, vol. 90 (5), pp. 70–75.Google Scholar
  6. 6.
    A. Kermanpur, N. Varahraam, E. Engilehei, M. Mohammadzadeh, and P. Davami: Mater. Sci. Technol., 2000, vol. 16, pp. 579–86.Google Scholar
  7. 7.
    U. Feuer and R. Wunderlin: Report No. 38/677, DGM, Oberursel, Germany, 1977, pp. 75–80.Google Scholar
  8. 8.
    T.Z. Kattamis and M.C. Flemings: Trans. TMS-AIME, 1965, vol. 233, pp. 992–99.Google Scholar
  9. 9.
    X. Xue and L. Xu: Mater. Sci. Eng. A, 2009, vol. 499, pp. 69–73.CrossRefGoogle Scholar
  10. 10.
    C.H. Konrad, M. Brunner, K. Kyrgyzbaev, R. Völkl, and U. Glatzel: J. Mater. Process. Technol., 2011, vol. 211, pp. 181–86.CrossRefGoogle Scholar
  11. 11.
    P.R. Sahm, I. Egry, and T. Volkmann: Schmelze, Erstarrung, Grenzflächen, Vieweg-Verlag, Wiesbaden, Germany, 1999, pp. 148–63.Google Scholar
  12. 12.
    L.A. Chapman: J. Mater. Sci., 2004, vol. 39, pp. 7229–36.CrossRefGoogle Scholar
  13. 13.
    L.A. Chapman, R. Morrell, P.N. Quested, R.F. Brooks, L.H. Chen, and D. Ford: Report MAT 9, National Physical Laboratory, Teddington, United Kingdom, Jan. 2008, pp. 22–34.Google Scholar
  14. 14.
    K.C. Mills: Recommend Values of Thermophysical Properties for Selected Commercial Alloys, Woodhead Publishing Ltd., Cambridge, United Kingdom, 2002, pp. 159–90.CrossRefGoogle Scholar
  15. 15.
    Y.S. Touloukian and D.P. DeWitt: Thermal Radiative Properties: Nonmetallic Solids, IFI/Plenum, New York, NY, 1972, pp. 139–97.Google Scholar
  16. 16.
    M. McLean: Directionally Solidified Materials for High Temperature Service, The Metals Society, London, 1983, pp. 35–37.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2010

Authors and Affiliations

  • M. M. Franke
    • 1
  • R. M. Hilbinger
    • 1
  • C. H. Konrad
    • 2
  • U. Glatzel
    • 2
  • R. F. Singer
    • 3
  1. 1.Neue Materialien Fürth GmbHFürthGermany
  2. 2.Metals and Alloys, University BayreuthBayreuthGermany
  3. 3.Department of Materials Science and EngineeringInstitute of Science and Technology of Metals, University of ErlangenErlangenGermany

Personalised recommendations