Metallurgical and Materials Transactions A

, Volume 42, Issue 7, pp 1805–1814 | Cite as

A Self-Consistent Approach for Modeling the Flow Behavior of the Alpha and Beta Phases in Ti-6Al-4V

  • Jeoung Han Kim
  • S. L. Semiatin
  • You Hwan Lee
  • Chong Soo Lee


The flow behavior of the α and β phases in Ti-6Al-4V was interpreted in the context of a self-consistent modeling formalism. For this purpose, high-temperature compression tests were conducted at various temperatures for a single-phase α alloy (Ti-7Al-1.5V), a variety of near-β alloys, and the two-phase alloy Ti-6Al-4V, each with an equiaxed microstructure. The flow behavior of the α phase in Ti-6Al-4V was deduced from the experimental results of the single-phase α alloy. The flow behavior of the β phase, which was predicted by using the self-consistent approach and the measured flow behaviors of Ti-6Al-4V and Ti-7Al-1.5V, showed good agreement with direct measurements of the various near-β alloys. From these results, it was shown that the strength of the α phase is approximately three times higher than that of the β phase at temperatures between 1088 K and 1223 K (815 °C and 950 °C). It was also concluded that the relative strain rates in the two phases varies significantly with temperature. The usefulness of the approach was confirmed by comparing the predicted and measured flow stresses for other Ti-6Al-4V and near-α alloys.


Titanium Alloy Flow Stress Flow Behavior Apparent Activation Energy Strain Rate Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was supported in part by the Air Force Office of Scientific Research and its Asian Office of Aerospace Research and Development (Dr. Ken Goretta and Dr. Joan Fuller, program managers). It was also conducted as a part of an in-house research project of Korea Institute of Materials Science.


  1. 1.
    S. Gourdet and F. Montheillet: Mater. Sci. Eng. A, 2000, vol. 283, pp. 274-88.CrossRefGoogle Scholar
  2. 2.
    A.A. Salem, S.R. Kalidindi, and S.L. Semiatin: Acta Mater., 2005, vol. 53, pp. 3495-502.CrossRefGoogle Scholar
  3. 3.
    K. Murali and N. Chandra: Acta Mater., 1995, vol. 43, pp. 1783-90.CrossRefGoogle Scholar
  4. 4.
    L. Briottet, J.J. Jonas, and F. Montheillet: Acta Mater., 1996, vol. 44, pp. 1665-72.CrossRefGoogle Scholar
  5. 5.
    J.H. Kim, N.S. Reddy, J.T. Yeom, C.S. Lee and N.-K. Park: Met. Mater. Int., 2009, vol. 15, pp. 427– 37.CrossRefGoogle Scholar
  6. 6.
    D. Deka, D. Joseph, S. Ghosh, and M. Mills: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1371-88.CrossRefGoogle Scholar
  7. 7.
    R.A. Lebensohn and G.R. Canova: Acta Mater., 1997, vol. 45, pp. 3687-94.CrossRefGoogle Scholar
  8. 8.
    S.L. Semiatin, F. Montheillet, G. Shen, and J.J. Jonas: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2719-27.CrossRefGoogle Scholar
  9. 9.
    P. Vo, M. Jahazi, S. Yue, and P. Bocher: Mater. Sci. Eng. A, 2007, vol. 447, pp. 99-110.CrossRefGoogle Scholar
  10. 10.
    H. Oikawa and T. Oomori: Mater. Sci. Eng. A, 1988, vol. 104, pp. 125-30.CrossRefGoogle Scholar
  11. 11.
    H. Oikawa: Metallurgy and Technology of Practical Titanium Alloys, Eds. S. Fujishiro, D. Eylon, and T. Kishi, TMS, Warrendale, PA, 1994, pp. 93-100.Google Scholar
  12. 12.
    H. Oikawa, Y. Ishikawa, and M. Seki: Titanium’92 Science and Technology, F.H. Froes and I.L. Caplan, eds., TMS, Warrendale, PA, 1993, pp. 1779.Google Scholar
  13. 13.
    H. Oikawa, K. Nishimura, and M.X. Cui: Scripta Metall., 1985, vol. 19, pp. 825-28.CrossRefGoogle Scholar
  14. 14.
    R. Castro and L. Seraphin: Mem. Sci. Rev. Metall., 1966, vol. 63, pp. 1025-58.Google Scholar
  15. 15.
    R. Hill: J. Mech. Phys. Solids, 1965, vol. 13, pp. 213-22.CrossRefGoogle Scholar
  16. 16.
    R. Hill: J. Mech. Phys. Solids, 1967, vol. 15, pp. 79-95.CrossRefGoogle Scholar
  17. 17.
    P.M. Suquet: J. Mech. Phys. Solids, 1993, vol. 41, pp. 981-1002.CrossRefGoogle Scholar
  18. 18.
    N.S. Reddy, C.S. Lee, J.H. Kim, and S.L. Semiatin: Mater. Sci. Eng. A, 2006, vol. 434, pp. 218-26.CrossRefGoogle Scholar
  19. 19.
    S.L. Semiatin and T.R. Bieler: Acta Mater., 2001, vol. 49, pp. 3565-73.CrossRefGoogle Scholar
  20. 20.
    A.A. Salem, S.R. Kalidindi, and R.D. Doherty: Scripta Mater., 2002, vol. 46, pp. 419-23.CrossRefGoogle Scholar
  21. 21.
    S.L. Semiatin and T.R. Bieler: The Second International Conference on Light Materials for Transportation Systems, Eds. N.J. Kim, C.S. Lee, and D. Eylon, Pusan, Korea, 2001, p. 79.Google Scholar
  22. 22.
    J.D. Eshelby: Proc. R. Soc. Lond., 1957, vol. 241, pp. 376-96.CrossRefGoogle Scholar
  23. 23.
    D. Dajno and F. Montheillet: Colloque GS-Titane Traitements Thermomécaniques, Université Paris Sud, Paris, France, 1991, p. 67.Google Scholar
  24. 24.
    H.J. McQueen and D.L. Bourell: Formability and Metallurgical Structure, Eds. A.K. Sachdev and J.D. Embury, TMS, Warrendale, PA, 1987, pp. 344-68.Google Scholar
  25. 25.
    I. Weiss and S.L. Semiatin: Mater. Sci. Eng. A, 1998, vol. 243, pp. 46-65.CrossRefGoogle Scholar
  26. 26.
    N.R. Barton and P.R. Dawson: Model. Simul. Mater. Sci. Eng. A, 2001, vol. 9, pp. 433-63.CrossRefGoogle Scholar
  27. 27.
    J.S. Kim, Y.W. Chang, and C.S. Lee: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 217-26.CrossRefGoogle Scholar
  28. 28.
    J.H. Kim, S.L. Semiatin, and C.S. Lee: Mater. Sci. Eng. A, 2005, vol. 394, pp. 366-75.CrossRefGoogle Scholar
  29. 29.
    S.L. Semiatin and T.R. Bieler: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1787-99.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2010

Authors and Affiliations

  • Jeoung Han Kim
    • 1
    • 2
  • S. L. Semiatin
    • 3
  • You Hwan Lee
    • 4
  • Chong Soo Lee
    • 1
  1. 1.Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangKorea
  2. 2.Structural Materials DivisionKorea Institute of Materials ScienceChangwonKorea
  3. 3.Materials and Manufacturing DirectorateAir Force Research Laboratory, AFRL/RXLMWright-Patterson Air Force BaseUSA
  4. 4.Wire Rod Research GroupTechnical Research Laboratories, POSCOPohangKorea

Personalised recommendations