Advertisement

Metallurgical and Materials Transactions A

, Volume 42, Issue 6, pp 1667–1674 | Cite as

Kinetic Analyses of the Growth and Dissolution Phenomena of Primary Si and α-Al in Partially Molten Al-Si (-Cu-Mg) Alloy Particles Using In Situ Transmission Electron Microscopy

  • Santhana K. Eswara MoorthyEmail author
  • James M. Howe
Article

Abstract

The growth and dissolution behavior of primary Si and α-Al in partially molten hypereutectic Al-Si–based alloy particles was investigated using in situ TEM to reveal the dynamic and instantaneous processes occurring during these phenomena. Direct evidence for the preferential growth of Si {113} facets compared with {111} facets resulting in prominent {111} facets bounding the Si crystals was obtained. The nucleation of primary Si was found to occur heterogeneously on the encapsulating alumina shell, whereas the α-Al phase nucleated homogeneously from the liquid Al-Si phase. The morphology of primary Si during growth was found to be highly faceted during growth but smoothly curved during dissolution, revealing fundamental mechanistic differences during these processes. We provide a ledge-based interpretation to explain the difference in growth and dissolution behavior. The α-Al phase displayed smoothly curved growth and dissolution morphologies, which are characteristic of an isotropic interfacial energy and a continuous growth mechanism.

Keywords

Dissolution Behavior Alloy Particle Oxide Shell Growth Twin Equilibrium Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

(MPEG 67584 KB)

(MPEG 40563 KB)

References

  1. 1.
    W.A. Tiller: The Science of Crystallization, Cambridge University Press, Cambridge, UK, 1991.CrossRefGoogle Scholar
  2. 2.
    M.C. Flemings: Solidification Processing, McGraw-Hill, New York, NY, 1974.Google Scholar
  3. 3.
    W. Kurz and D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, Switzerland, 1989.Google Scholar
  4. 4.
    D. T. J. Hurle: Handbook of Crystal Growth, Elsevier, New York, NY, 1993.Google Scholar
  5. 5.
    M. Glicksman: Diffusion in Solids, Wiley Interscience, New York, NY, 1999.Google Scholar
  6. 6.
    D. Stefanescu: Science and Engineering of Casting Solidification, Springer, New York, NY, 2002.Google Scholar
  7. 7.
    M. Elmadagli and A.T. Alpas: Wear, 2006, vol. 261, pp. 823-34.CrossRefGoogle Scholar
  8. 8.
    R.E. Napolitano, H. Meco, and C. Jung: JOM, 2004, vol. 56, no. 4, pp. 16-21.CrossRefGoogle Scholar
  9. 9.
    Y.E. Kalay, L.S. Chumbley, I.E. Anderson, and R.E. Napolitano: Metall. Mater. Trans. A., 2007, vol. 38A, pp. 1452-57.CrossRefGoogle Scholar
  10. 10.
    M. Hillert: Metall. Mater. Trans. A., 2003, vol. 34A, pp. 2688-90.CrossRefGoogle Scholar
  11. 11.
    J.M. Dowling, J.M. Corbett, and H.W. Kerr: J. Mater. Sci., 1987, vol. 22, 4504-13.CrossRefGoogle Scholar
  12. 12.
    R. Wang, W. Lu, and L.M. Hogan: Metall. Mater. Trans. A, 1997, vol. 28A, 1233-43.CrossRefGoogle Scholar
  13. 13.
    Valimet, Inc., Stockton, CA, 2004, http://www.valimet.com/.
  14. 14.
    G.A. Storaska and J.M. Howe: Mater. Sci. Eng. A, 2004, vol. A368, pp. 183-90.Google Scholar
  15. 15.
    T. Yokota, J.M. Howe, and M. Murayama: Phys. Rev. Lett., 2003, vol. 91, pp. 265504.CrossRefGoogle Scholar
  16. 16.
    R. Oshima, F. Hori, M. Komatsu, and H. Mori: Jpn. J. Appl. Phys., 1998, vol. 37, pp. 1430-32.CrossRefGoogle Scholar
  17. 17.
    W.E. King, G.H. Campbell1, A. Frank1, B. Reed, J.F. Schmerge, B.J. Siwick, B.C. Stuart, and P.M. Weber: J. Appl. Phys., 2005, vol. 97, p. 111101.Google Scholar
  18. 18.
    A.K. Tan, C.K. Ong, and H.S. Tan: Semicond. Sci. Technol., 1988, vol. 3, pp. 1-5.CrossRefGoogle Scholar
  19. 19.
    A.G. Cullis, N.G. Chew, H.C. Webber, and D.J. Smith: J. Cryst. Growth, 1984, vol. 68, pp. 624-38.CrossRefGoogle Scholar
  20. 20.
    T. Abe: J. Cryst. Growth, 1974, vol. 24/25, pp. 463-67.CrossRefGoogle Scholar
  21. 21.
    C. Hayzelden and J.L. Batstone: MRS Symp. Proc., 1994, vol. 321, pp. 579-84.CrossRefGoogle Scholar
  22. 22.
    R. Sinclair: MRS Bull., 1994, vol. 19, no. 6, p. 26.Google Scholar
  23. 23.
    T.B. Massalski, W.A. Soffa, and D.E. Laughlin: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 825-31.CrossRefGoogle Scholar
  24. 24.
    X. Zhang, D. Wang, and C. Yao: J. Mater. Sci. Lett., 2002, vol. 21, pp. 921-22.CrossRefGoogle Scholar
  25. 25.
    R.F. Sekerka: Cryst. Res. Tech., 2005, vol. 40, nos. 4/5, pp. 291-306.CrossRefGoogle Scholar
  26. 26.
    J.M. Bermond, J.J. Metois, X. Egea, and F. Floret: Surf. Sci., 1995, vol. 330, pp.48-60.CrossRefGoogle Scholar
  27. 27.
    D. Turnbull, R.E. Cech: J. Appl. Phys., 1950, vol. 21, pp. 804-10.CrossRefGoogle Scholar
  28. 28.
    D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, CRC Press, Boca Raton, FL, 2004.Google Scholar
  29. 29.
    G.A. Storaska, K.T. Moore, and J.M. Howe: Philos. Mag. A, 2004, vol. 84, pp. 2619-34.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2010

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of VirginiaCharlottesvilleUSA
  2. 2.Laboratoire de Physique des Solides, Centre National de la Recherche Scientifique (CNRS)Université Paris SudOrsayFrance

Personalised recommendations