Metallurgical and Materials Transactions A

, Volume 42, Issue 3, pp 575–581 | Cite as

Hybrid Monte Carlo Simulation of Stress-Induced Texture Evolution with Inelastic Effects

  • Liangzhe Zhang
  • Rémi Dingreville
  • Timothy Bartel
  • Mark T. Lusk
Symposium: Structural Transitions and Local Deformation Processes at and near Grain Boundaries

Abstract

A hybrid Monte Carlo (HMC) approach is employed to quantify the influence of inelastic deformation on the microstructural evolution of polycrystalline materials. This approach couples a time explicit material point method (MPM) for deformation with a calibrated Monte Carlo model for grain boundary motion. A rate-independent crystal plasticity model is implemented to account for localized plastic deformations in polycrystals. The dislocation energy difference between grains provides an additional driving force for texture evolution. This plastic driving force is then brought into a MC paradigm via parametric links between MC and sharp-interface (SI) kinetic models. The MC algorithm is implemented in a parallelized setting using a checkerboard updating scheme. As expected, plastic loading favors texture evolution for grains that have a bigger Schmid factor with respect to the loading direction, and these are the grains most easily removed by grain boundary motion. A macroscopic equation is developed to predict such texture evolution.

Notes

Acknowledgements

This research is funded by Sandia National Laboratories. Sandia National Laboratories are operated by the Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No.DE-AC04-94AL85000. We also acknowledge the Golden Energy Computing Organization at the Colorado School of Mines for the use of resources acquired with financial assistance from the National Science Foundation and the National Renewable Energy Laboratories.

References

  1. 1.
    S.R. Kalidindi, C.A. Bronkhorst, and L. Anand.: J. Mech. Phys. Solids, 1992, vol. 40 (3), pp. 537–69.CrossRefGoogle Scholar
  2. 2.
    I.L. Dillamore and H. Katoh: Metal Sci., 1974, vol. 8, pp. 73–83.Google Scholar
  3. 3.
    J. Hirsch and K. Lucke.: Acta Metal., 1988, vol. 36, pp. 2883–2904.CrossRefGoogle Scholar
  4. 4.
    F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe.: Acta Mater., 2010, vol. 58 (4), pp. 1152–1211.CrossRefGoogle Scholar
  5. 5.
    A.U. Telang, T.R. Bieler, A. Zamiri, and F. Pourboghrat.: Acta Mater., 2007, vol. 55 (7), pp. 2265–77.CrossRefGoogle Scholar
  6. 6.
    C.C. Battaile, T.E. Buchheit, E.A. Holm, G.W. Wellman, and M.K. Neilsen.: Mater Res. Soc. Symp. Proc., 1999, vol. 538, pp. 269–73.Google Scholar
  7. 7.
    L. Zhang, T. Bartel, and M.T. Lusk.: Comput. Mater. Sci., 2010, vol. 48 (2), 419–25.CrossRefGoogle Scholar
  8. 8.
    D. Landau and K. Binder.: A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press, Cambridge, United Kingdom, 2005.CrossRefGoogle Scholar
  9. 9.
    D. Sulsky, S. Zhou, and H.L. Schreyer.: Comput. Phys. Commun., 1995, vol. 87 (1–2), pp. 236–52.CrossRefGoogle Scholar
  10. 10.
    F.Y. Wu.: Rev. Modern Phys., 1982, vol. 54 (1), pp. 235–68.CrossRefGoogle Scholar
  11. 11.
    R. Abeyaratne and J.K. Knowles.: J. Mech. Phys. Solids, 1990, vol. 38 (3), pp. 345–60.CrossRefGoogle Scholar
  12. 12.
    P. Liu and M.T. Lusk.: Phys. Rev. E, 2002, vol. 66, 061603.CrossRefGoogle Scholar
  13. 13.
    L. Zhang, T. Bartel, and M.T. Lusk.: Comput. Mater. Sci., 2010, vol. 48 (4), pp. 790–95.CrossRefGoogle Scholar
  14. 14.
    M.I. Mendelev A.E. Lobkovsky, A. Karma, and D.J. Srolovitz.: Acta Mater, 2004, vol. 52 (2), pp. 285–92.CrossRefGoogle Scholar
  15. 15.
    G. Gottstein, Y. Ma, and L.S. Shvindlerman.: Acta Mater., 2005, vol. 53 (5), pp. 1535–44.CrossRefGoogle Scholar
  16. 16.
    G. Gottstein and L.S. Shvindlerman.: Scripta Mater., 2006, vol. 54 (6), pp. 1065–70.CrossRefGoogle Scholar
  17. 17.
    G. Gottstein and L.S. Shvindlerman.: Scripta Mater., 2006, vol. 54 (6), pp. 1065–70.CrossRefGoogle Scholar
  18. 18.
    U.F. Kocks, C.N. Tome, and H.R. Wenk.: Texture and Anisotropy, Cambridge University Press, Cambridge, United Kingdom, 1998.Google Scholar
  19. 19.
    C. Miehe.: Int. J. Numer. Methods Eng., 2001, vol. 50, pp. 273–98.CrossRefGoogle Scholar
  20. 20.
    R. Dingreville, C.C. Battaile, L.N. Brewer, E.A. Holm, B.L. Boyce.: Int. J. Plasticity, 2010, vol. 26 (5), pp. 617–33.CrossRefGoogle Scholar
  21. 21.
    H. Fried.: J. Phys. A, 1990, vol. 23, pp. 4165–81.CrossRefGoogle Scholar
  22. 22.
    A.B. Bortz, M.H. Kalos, and J.L. Lebowitz.: J. Comput. Phys., 1975, vol. 17 (1), pp. 10–18.CrossRefGoogle Scholar
  23. 23.
    K.S. Havner.: Int. J. Solids Struct., 1969, vol. 5, pp. 74–82.CrossRefGoogle Scholar
  24. 24.
    G.I. Taylor.: J. Inst. Met., 1938, vol. 62, pp. 307–24.Google Scholar
  25. 25.
    K.S. Havner: Mech. Solids, the Rodney Hill 60th Anniversary, 1982, pp. 265–302.Google Scholar
  26. 26.
    A.J. Beaudoin, A. Acharya, S.R. Chen, D.A. Korzekwa, and M.G. Stout.: Acta Mater., 2000, vol. 48 (13), pp. 3409–23.CrossRefGoogle Scholar
  27. 27.
    L. Anand and M. Kothari.: J. Mech. Phys. Solids, 1996, vol. 44, pp. 525–58.CrossRefGoogle Scholar
  28. 28.
    C. Battaile W.A. Counts, M.V. Braginsky and E.A. Holm.: Int. J. Plast., 2008, vol. 24, pp. 2041–49.Google Scholar
  29. 29.
    R.K. Pathria. Statistical Mechanics, Butterworth-Heinemann, Butterworth, London, 1996.Google Scholar
  30. 30.
    F.J. Humphreys and M. Hatherly.: Recrystallization and Related Annealing Phenomena, Elsevier Ltd., Oxford, United Kingdom, 2004.Google Scholar
  31. 31.
    C. Herring.: Surface Tension as a Motivation for Sintering, McGraw-Hill, New York, NY, 1949.Google Scholar
  32. 32.
    D.L. Olmsted, S.M. Foiles, and E.A. Holm.: Acta Mater., 2009, vol. 57 (13), pp. 3694–3703.CrossRefGoogle Scholar
  33. 33.
    R. Le Gall, G. Liao, and G. Saindrenan.: Mater. Sci. Forum, 1999, vols. 294–296, pp. 509–12.CrossRefGoogle Scholar
  34. 34.
    L. Onsager.: Phys. Rev., 1944, vol. 65 (3–4), pp. 117–50.CrossRefGoogle Scholar
  35. 35.
    K. Binder.: Phys. Rev. A, 1982, vol. 25 (3), pp. 1699–1709.CrossRefGoogle Scholar
  36. 36.
    E. Burkner and D. Stauffer.: Z. Phys. B, 1983, vol. 53, pp. 241–49.CrossRefGoogle Scholar
  37. 37.
    A. Teller, N. Metropolis, and E. Teller.: J. Chem. Phys., 1953, vol. 21, pp. 1078–83.Google Scholar
  38. 38.
    G.N. Hassold and E.A. Holm.: Comput. Phys., 1993, vol. 7 (1), pp. 97–107.CrossRefGoogle Scholar
  39. 39.
    G. Korniss, M.A. Novotny, and P.A. Rikvold.: J. Comput. Phys., 1999, vol. 153 (2), pp. 488–508.CrossRefGoogle Scholar
  40. 40.
    E.A. Holm, G.N. Hassold, and M.A. Miodownik.: Acta Mater., 2001, vol. 49 (15), pp. 2981–91.CrossRefGoogle Scholar
  41. 41.
    E.A. Holm, D.J. Srolovitz, and J.W. Cahn.: Acta Mater., 1993, vol. 41 (4), pp. 1119–36.CrossRefGoogle Scholar
  42. 42.
    H.M. Ledbetter: Cryogenics, 1982, pp. 653–56.Google Scholar
  43. 43.
    P.A. Beck.: Metal Interfaces, ASM, Cleveland, OH, 1952.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2010

Authors and Affiliations

  • Liangzhe Zhang
    • 1
    • 2
    • 3
  • Rémi Dingreville
    • 1
  • Timothy Bartel
    • 4
  • Mark T. Lusk
    • 2
  1. 1.Department of Mechanical and Aerospace EngineeringNew York University-PolyBrooklynUSA
  2. 2.Department of PhysicsColorado School of MinesGoldenUSA
  3. 3.Idaho National LaboratoryIdaho FallsUSA
  4. 4.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations