Metallurgical and Materials Transactions A

, Volume 41, Issue 13, pp 3473–3487 | Cite as

Distribution Characteristics of In-Grain Misorientation Axes in Cold-Rolled Commercially Pure Titanium and Their Correlation with Active Slip Modes

  • Y. B. Chun
  • M. Battaini
  • C. H. J. Davies
  • S. K. Hwang


The distribution characteristics of in-grain misorientation axes (IGMA) in cold-rolled pure titanium were investigated using electron backscatter diffraction (EBSD). Depending on the orientation of individual grains, two distinct IGMA distribution patterns were observed: one with strong intensities of IGMA around ⟨0001⟩ and the other with those around ⟨uvt0⟩. Analyses based on the Taylor axes and Schmid factors of possible slip modes suggested that the former pattern arises from predominant activation of prism ⟨a⟩ slip, while activation of \( \{ 11\bar{2}2\} \langle \bar{1}\bar{1}23 \rangle \) slip under the suppression of prism ⟨a⟩ slip results in the latter pattern. It was also found that prism ⟨a⟩ slip becomes more active with increasing strain, playing a critical role in the plasticity of pure titanium. The present work demonstrates that IGMA analysis of EBSD data may be used to explore the active slip mode in polycrystalline hexagonal-close-packed (hcp) metals deformed to moderate to large strains.


Misorientation Angle Slip Mode Cold Reduction IGMA Distribution Discrete Pole Figure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The present work was performed under the auspices of the Korea Science and Engineering Foundation (KOSEF) through the 2009 Basic Science Program and was also supported by the Australian Research Council through the Centre of Excellence for Design in Light Metals.


  1. 1.
    P.G. Patridge: Metall. Rev., 1967, vol. 118, pp. 169–94.Google Scholar
  2. 2.
    M.H. Yoo: Metall. Mater. Trans. A, 1981, vol. 12A, pp. 409–18.ADSGoogle Scholar
  3. 3.
    H. Conrad: Prog. Mater. Sci., 1981, vol. 26, pp. 123–403.CrossRefGoogle Scholar
  4. 4.
    C.J. McHargue and J.P. Hammond: Acta Metall., 1953, vol. 1, pp. 700–05.CrossRefGoogle Scholar
  5. 5.
    A.T. Churchman: Proc. R. Soc., 1954, vol. 226, pp. 216–26.CrossRefADSGoogle Scholar
  6. 6.
    A. Akhtar: Acta Metall., 1973, vol. 21, pp. 1–11.CrossRefGoogle Scholar
  7. 7.
    A. Akhtar: J. Nucl. Mater., 1973, vol. 47, pp. 79–86.CrossRefADSGoogle Scholar
  8. 8.
    A. Akhtar: Metall. Trans. A, 1975, vol. 6A, pp. 1105–13.ADSGoogle Scholar
  9. 9.
    T. Sakai and M.E. Fine: Scripta Metall., 1974, vol. 8, pp. 541–44.CrossRefGoogle Scholar
  10. 10.
    A. Akhtar and E. Teghtoonian: Metall. Trans. A, 1975, vol. 6A, pp. 2201–08.ADSGoogle Scholar
  11. 11.
    A. Akhtar: Scripta Metall., 1975, vol. 9, pp. 859–61.CrossRefGoogle Scholar
  12. 12.
    P. Merle: J. Nucl. Mater., 1987, vol. 144, pp. 275–77.Google Scholar
  13. 13.
    H. Numakura, Y. Minonishi, and M. Koiwa: Scripta Metall., 1986, vol. 20, pp. 1581–86.CrossRefGoogle Scholar
  14. 14.
    L. Xiao and H. Gu: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1021–33.CrossRefGoogle Scholar
  15. 15.
    J. Koike and R. Ohyama: Acta Mater., 2005, vol. 53, pp. 1963–72.Google Scholar
  16. 16.
    N.E. Paton and W.A. Backofen: Metall. Trans., 1970, vol. 1, pp. 2839–47.Google Scholar
  17. 17.
    Y. Minonishi and S. Morozumi: Scripta Metall., 1982, vol. 16, pp. 427–30.CrossRefGoogle Scholar
  18. 18.
    M.G. Glavicic, A.A. Salem, and S.L. Semiatin: Acta Mater., 2004, vol. 52, pp. 647–55.CrossRefGoogle Scholar
  19. 19.
    M.G. Glavicic and S.L. Semiatin: Acta Mater., 2006, vol. 54, pp. 5337–47.CrossRefGoogle Scholar
  20. 20.
    I.C. Dragomir, D.S. Li, G.A. Castello-Branco, H. Garmestani, R.L. Snyder, G. Ribarik, and T. Ungár: Mater. Charact., 2005, vol. 55, pp. 66–74.CrossRefGoogle Scholar
  21. 21.
    D.W. Brown, S.R. Agnew, M.A.M. Bourke, T.M. Holden, S.C. Vogel, and C.N. Tomé: Mater. Sci. Eng. A, 2005, vol. 399, pp. 1–12.CrossRefGoogle Scholar
  22. 22.
    S.R. Agnew, D.W. Brown, and C.N. Tomé: Acta Mater., 2006, vol. 54, pp. 4841–52.CrossRefGoogle Scholar
  23. 23.
    E.J. Rapperport and C.S. Hartley: Trans. AIME, 1960, vol. 218, pp. 869–77.Google Scholar
  24. 24.
    M. Battaini, E.V. Pereloma, and C.H.J. Davies: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 276–85.CrossRefADSGoogle Scholar
  25. 25.
    P. Bastien and P. Pointu: J. Nucl. Mater., 1962, vol. 5, pp. 101–08.CrossRefADSGoogle Scholar
  26. 26.
    W. Taylor and A. Moore: J. Nucl. Mater., 1964, vol. 13, pp. 23–27.CrossRefADSGoogle Scholar
  27. 27.
    I.N. Frantsevich, V.A. Kravets, and K.V. Nazarenko: Poroshkovaya Met., 1975, vol. 8, pp. 89–93.Google Scholar
  28. 28.
    Y.B. Chun and S.K. Hwang: Acta Mater., 2008, vol. 56, pp. 369–79.CrossRefGoogle Scholar
  29. 29.
    J.P. Hirth and J. Lothe: Theory of Dislocations, McGraw-Hill, New York, NY, 1968.Google Scholar
  30. 30.
    E. Tenckhoff: Z. Metallkd., 1972, vol. 63, pp. 192–97.Google Scholar
  31. 31.
    L. Xiao and Y. Umakoshi: Mater. Sci. Eng. A, 2003, vol. 339, pp. 63–72.CrossRefGoogle Scholar
  32. 32.
    T.R. Cass: The Science, Technology and Application of Titanium, R.I. Jaffee and N.E. Promisel, eds., Pergamon, Oxford, United Kingdom, 1970, pp. 459–77.Google Scholar
  33. 33.
    J.C. Williams and M.J. Blackburn: Phys. Status Solidi, 1968, vol. 25, pp. K1–K3.CrossRefADSGoogle Scholar
  34. 34.
    J.F. Stohr and J.P. Poirier: Phil. Mag., 1972, vol. 25, pp. 1313–29.CrossRefADSGoogle Scholar
  35. 35.
    S. Ando and H. Tonda: Mater. Trans. JIM, 2000, vol. 41, pp. 1188–91.Google Scholar
  36. 36.
    E.D. Levine: Trans. AIME, 1966, vol. 236, pp. 1558–65.Google Scholar
  37. 37.
    C.N. Tomé, P.J. Maudlin, R.A. Lebensohn, and G.C. Kaschner: Acta Mater., 2001, vol. 49, pp. 3085–96.CrossRefGoogle Scholar
  38. 38.
    J.J. Hauser and B. Chalmers: Acta Metall., 1961, vol. 9, pp. 802–18.CrossRefGoogle Scholar
  39. 39.
    J.P. Hirth: Metall. Trans., 1972, vol. 3, pp. 3047–67.CrossRefGoogle Scholar
  40. 40.
    R.M. Quimby, J.D. Mote, and J.E. Dorn: Trans. ASM, 1962, vol. 55, pp. 149–57.Google Scholar
  41. 41.
    A. Urakami, M. Meshii, and M.E. Fine: Acta Metall., 1970, vol. 18, pp. 87–99.CrossRefGoogle Scholar
  42. 42.
    F.E. Hauser, P.R. Landon, and J.E. Dorn: Trans. ASM, 1956, vol. 48, pp. 986–1001.Google Scholar
  43. 43.
    S.R. Agnew, J.A. Horton, and M.H. Yoo: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 851–58.ADSGoogle Scholar
  44. 44.
    S.R. Agnew, M.H. Yoo, and C.N. Tomé: Acta Mater., 2001, vol. 49, pp. 4277–89.CrossRefGoogle Scholar
  45. 45.
    M.J. Philippe, F. Wagner, F.E. Mellab, C. Esling, and J. Wegria: Acta Metall. Mater., 1994, vol. 42, pp. 239–50.CrossRefGoogle Scholar
  46. 46.
    M.J. Philippe, M. Serghat, P.V. Houtte, and C. Esling: Acta Metall. Mater., 1995, vol. 43, pp. 1619–30.CrossRefGoogle Scholar
  47. 47.
    J.J. Fundenberger, M.J. Philippe, F. Wagner, and C. Esling: Acta Mater., 1997, vol. 45, pp. 4041–55.CrossRefGoogle Scholar
  48. 48.
    G. Proust, C.N. Tomé, and G.C. Kaschner: Acta Mater., 2007, vol. 55, pp. 2137–48.CrossRefGoogle Scholar
  49. 49.
    G.C. Kaschner, C.N. Tomé, I.J. Beyerlein, S.C. Vogel, D.W. Brown, and R.J. McCabe: Acta Mater., 2006, vol. 54, pp. 2887–96.CrossRefGoogle Scholar
  50. 50.
    Y.B. Chun, S.H. Yu, S.L. Semiatin, and S.K. Hwang: Mater. Sci. Eng. A, 2005, vol. 398, pp. 209–19.CrossRefGoogle Scholar
  51. 51.
    R.E. Reed-Hill and E.P. Dahlberg: Electrochem. Technol., 1966, vol. 4, pp. 303–07.Google Scholar
  52. 52.
    V. Ramachandran, D.H. Baldwin, and R.E. Reed-Hill: Metall. Trans., 1970, vol. 1, pp. 3011–18.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2010

Authors and Affiliations

  • Y. B. Chun
    • 1
  • M. Battaini
    • 2
  • C. H. J. Davies
    • 1
  • S. K. Hwang
    • 3
  1. 1.ARC Centre of Excellence for Design in Light Metals, Department of Materials EngineeringMonash UniversityClaytonAustralia
  2. 2.Advanced Materials GroupAECOM, Fortitude ValleyQueenslandAustralia
  3. 3.School of Materials Science and EngineeringInha UniversityIncheonSouth Korea

Personalised recommendations