Advertisement

Metallurgical and Materials Transactions A

, Volume 42, Issue 2, pp 319–329 | Cite as

First-Principles Study on the Grain Boundary Embrittlement of Metals by Solute Segregation: Part I. Iron (Fe)-Solute (B, C, P, and S) Systems

  • Masatake Yamaguchi
Symposium: International Symposium on Stress Corrosion Cracking in Structural Materials

Abstract

The microscopic mechanism of grain boundary (GB) embrittlement in metals by solute segregation has been not well understood for many years. From first-principles calculations, we show here that the calculated cohesive energy (=2·surface energy − GB energy) of bcc Fe Σ3(111) symmetrical tilt grain boundary (STGB) is reduced by the segregation of sulfur (S) and phosphorous (P) while it is increased by the segregation of boron (B) and carbon (C). The rate of the decrease/increase in the cohesive energy is proportional to the experimental shift in the DBTT of high-purity iron with increasing segregation. This indicates that the change in the cohesive energy of GB plays a key role in the GB embrittlement of metals.

Keywords

Grain Boundary Solute Atom Cohesive Energy Fracture Plane Maximum Tensile Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author thanks J. Kameda, Y. Nishiyama, K. Onizawa, Y. Kaji, T. Tsukada, S. Jitsukawa, H. Kaburaki, K. Ebihara, and T. Suzudo for helpful discussions. This work was performed on the supercomputer SGI Altix 3900Bx2 in the Japan Atomic Energy Agency (JAEA).

References

  1. 1.
    M.P. Seah: in Practical Surface Analysis (Second Edition), D. Briggs and M.P. Seah, eds., John Wiley & Sons Ltd., New York, NY, 1990, pp. 311–56, and references therein.Google Scholar
  2. 2.
    R.P. Messmer and C.L. Briant: Acta Metall., 1982, vol. 30, pp. 457–67.CrossRefGoogle Scholar
  3. 3.
    S. Crampin, D.D. Vvedensky, J.M. MacLaren, and M.E. Eberhart: Phys. Rev. B, 1989, vol. 40, pp. 3413–16.CrossRefGoogle Scholar
  4. 4.
    J.R. Rice and J.-S. Wang: Mater. Sci. Eng., 1989, vol. A107, pp. 23–40.Google Scholar
  5. 5.
    R. Wu, A.J. Freeman, and G.B. Olson: Science, 1994, vol. 265, pp. 376–80.CrossRefGoogle Scholar
  6. 6.
    M. Yamaguchi, M. Shiga, and H. Kaburaki: Science, 2005, vol. 307, pp. 393–97.CrossRefGoogle Scholar
  7. 7.
    M. Yamaguchi: J. Jpn. Inst. Met., 2008, vol. 72, pp. 657–66 (in Japanese).CrossRefGoogle Scholar
  8. 8.
    M. Yamaguchi, Y. Nishiyama, and H. Kaburaki: Phys. Rev. B, 2007, vol. 76, pp. 035418–035422.CrossRefGoogle Scholar
  9. 9.
    M.L. Jokl, V. Vitek, and C.J. McMahon: Acta Metall., 1980, vol. 28, pp. 1479–88.CrossRefGoogle Scholar
  10. 10.
    M. Yamaguchi, K. Ebihara, M. Itakura, T. Kadoyoshi, T. Suzudo, and H. Kaburaki: Metall. Mater. Trans. A, 2010, vol. 41A, DOI:  10.1007/s11661-010-0380-6.
  11. 11.
    G. Kresse and J. Hafner: Phys. Rev. B, 1993, vol. 47, pp. 558–61.CrossRefGoogle Scholar
  12. 12.
    G. Kresse and J. Furthmueller: Phys. Rev. B, 1996, vol. 54, pp. 11169–86.CrossRefGoogle Scholar
  13. 13.
    G. Kresse and D. Joubert: Phys. Rev. B, 1999, vol. 59, pp. 1758–75.CrossRefGoogle Scholar
  14. 14.
    J.P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett., 1996, vol. 77, pp. 3865–68.CrossRefGoogle Scholar
  15. 15.
    J.H. Rose, J. Ferrante, and J.R. Smith: Phys. Rev. Lett., 1981, vol. 47, pp. 675–78.CrossRefGoogle Scholar
  16. 16.
    H. Kimura: J. ISIJ, 1993, vol. 79, pp. N754-N760 (in Japanese).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2010

Authors and Affiliations

  1. 1.Center for Computational Science and e-systemsJapan Atomic Energy AgencyTokai-muraJapan

Personalised recommendations