Metallurgical and Materials Transactions A

, Volume 41, Issue 11, pp 2816–2828 | Cite as

Hydride-Phase Formation and its Influence on Fatigue Crack Propagation Behavior in a Zircaloy-4 Alloy

  • Elena Garlea
  • Hahn Choo
  • Gongyao Y. Wang
  • Peter K. Liaw
  • Bjørn Clausen
  • Donald W. Brown
  • Jungwon Park
  • Philip D. Rack
  • Edward A. Kenik


The hydride-phase formation and its influence on the fatigue behavior of a Zircaloy-4 alloy charged with hydrogen gas are investigated. First, the microstructure and fatigue crack propagation rate of the alloy in the as-received condition are studied. Second, the formation and homogeneous distribution of the delta zirconium hydride in the bulk and its effect on the fatigue crack propagation rate are presented. The results show that in the presence of hydrides, the zirconium alloy exhibits reduced toughness and enhanced crack growth rates. Finally, the influence of a preexisting fatigue crack in the specimen and the subsequent hydride formation are examined. The residual lattice strain profile around the fatigue crack tip is measured using neutron diffraction. It is observed that the combined effects of residual strains and hydride precipitation on the fatigue behavior are more severe leading to propagation of the crack under near threshold loading.



E. Garlea acknowledges the support of the National Science Foundation (NSF) International Materials Institutes (IMI) Program (DMR-0231320) and the Tennessee Advanced Materials Laboratory Fellowship Program. E. Garlea is grateful to Drs. D.A. Smith and S.J. Randolph for valuable suggestions regarding the nickel sputtering. This work has benefited from the use of Lujan Neutron Scattering Center at LANSCE, which is funded by the Office of Basic Energy Sciences (Department of Energy). Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract De-AC52-06NA25396. EBSD analysis was conducted at the SHaRE User Facility, which is sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, Office of Science, U.S. Department of Energy.


  1. 1.
    V. Quach and D.O. Northwood: Metallography, 1984, vol. 17, pp. 191–201.CrossRefGoogle Scholar
  2. 2.
    G. Bertolino, J. Perez Ipina, and G. Meyer: J. Nucl. Mater., 2006, vol. 348, pp. 205–12.CrossRefADSGoogle Scholar
  3. 3.
    E.C.W. Perryman: J. Br. Nucl. Energ Soc., 1978, vol. 17 (2), pp. 95–105.Google Scholar
  4. 4.
    J. Lufrano, P. Sofronis, and H.K. Birnbaum: J. Mech. Phys. Solids, 1998, vol. 46, pp. 1497–1520.MATHCrossRefADSGoogle Scholar
  5. 5.
    J. Lufrano, P. Sofronis, and H.K. Birnbaum: J. Mech. Phys. Solids, 1996, vol. 44, no. 2, pp. 179–205.CrossRefADSGoogle Scholar
  6. 6.
    S. Sagat, S.Q. Shi, and M.P. Puls: Mater. Sci. Eng. A, 1994, vol. 176, pp. 237–47.CrossRefGoogle Scholar
  7. 7.
    R. Dutton, K. Nuttall, M.P. Puls, and L.A. Simpson: Metall. Trans. A, 1977, vol. 8A, pp. 1553–62.ADSGoogle Scholar
  8. 8.
    L.A. Simpson and M.P. Puls: Metall. Trans. A, 1979, vol. 10A, p. 1093.ADSGoogle Scholar
  9. 9.
    W.W. Gerberich, Y.T. Chen, and C. St. John: Metall. Trans. A, 1975, vol. 6, no. 8, pp. 1485–98.CrossRefGoogle Scholar
  10. 10.
    J.- H. Huang and C.-S Ho: Mater. Chem. Phys., 1997, vol. 47, pp. 184–92.CrossRefGoogle Scholar
  11. 11.
    S. Suresh: Fatigue of Materials, 2nd ed, Cambridge University Press, New York, NY. 1998.Google Scholar
  12. 12.
    Y. Sun, H. Choo, P.K. Liaw, Y. Lu, B. Yang, D.W. Brown, and M.A.M. Bourke: Scripta Mater., 2005, vol. 53, pp. 971–75.CrossRefGoogle Scholar
  13. 13.
    T.M. Holden, J.H. Root, R.A. Holt, and P.A. Turner: J. Nucl. Mater., 2002, vol. 304, pp. 73–82.CrossRefADSGoogle Scholar
  14. 14.
    J.D. Almer, J.B. Cohen, and R.A. Winholtz: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2127–36.CrossRefADSGoogle Scholar
  15. 15.
    E. Garlea, B. Clausen, E.A. Kenik, D. Ciurchea, S.C. Vogel, J.W.L. Pang, and H. Choo: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1255–60.CrossRefADSGoogle Scholar
  16. 16.
    E. Garlea, V.O. Garlea, H. Choo, C.R. Hubbard, and P.K. Liaw: Mater. Sci. Forum, 2007, vols. 539–543, pp. 1443–48.CrossRefGoogle Scholar
  17. 17.
    Wah Chang Company Technical Department,, 2010.
  18. 18.
    ASTM E647-86, Annual Book of ASTM Standards, 1986, pp. 714–36.Google Scholar
  19. 19.
    J. Harris, and S. Andersson: Phys. Rev. Lett., 1985, vol. 55, pp. 583–1586.ADSGoogle Scholar
  20. 20.
    G.F.V. Voort: Metallography, Principles and Practice, ASM, Materials Park, OH, 1984, p. 701.Google Scholar
  21. 21.
    ASTM B 811, “Standard Specification for Wrought Zirconium Alloy Seamless Tubes for Nuclear Reactor Fuel Cladding”, 2007, p. 6.Google Scholar
  22. 22.
    H. Tada, P.C. Paris, and G.R. Irwin: The Stress Analysis of Cracks Handbook, Paris Productions, St. Louis, MO, 1985.Google Scholar
  23. 23.
    A. Saxena and S.J. Hudak Jr., Int. J. Fracture, 1978, vol. 14, no. 5, pp. 453–68.CrossRefGoogle Scholar
  24. 24.
    L.J. Chen, P.K. Liaw, R.L. McDaniels, and D.L. Klarstrom: Metall. Mater. Trans. A, 2003, vol. 34 A, pp. 1451–60.CrossRefADSGoogle Scholar
  25. 25.
    M.A.M. Bourke, D.C. Dunand, and E Üstündag: Appl. Phys. A, 2002, vol. 74, pp. S1707–09.CrossRefADSGoogle Scholar
  26. 26.
    H.M. Rietveld: J. Appl. Cryst., 1969, vol. 2, pp. 65–71.CrossRefGoogle Scholar
  27. 27.
    A.C. Larson and R.B. Von Dreele: General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR,, 2000, pp. 86–748.
  28. 28.
    ImageJ software:
  29. 29.
    ASTM E 562, “Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count”, 2002.Google Scholar
  30. 30.
    R.A. Holt: J. Nucl. Mater., 1970, vol. 35, pp. 322–34.CrossRefADSGoogle Scholar
  31. 31.
    D. Ciurchea, A.V. Pop, C. Gheorghiu, I. Furtuna, M. Todica, A. Dinu, and M. Roth: J. Nucl. Mater., 1996, vol. 231, pp. 83–91.CrossRefADSGoogle Scholar
  32. 32.
    J.H. Root, W.M. Small, D. Khatamian, and O.T. Woo: Acta Mater., 2003, vol. 51, pp. 2041–53.CrossRefGoogle Scholar
  33. 33.
    A. Steuwer, J.R. Santisteban, M. Preuss, M.J. Peel, T. Buslaps, and M. Harada: Acta Mater., 2009, vol. 57, pp. 145–52.CrossRefGoogle Scholar
  34. 34.
    G. Bertolino, G. Meyer, and J.P. Ipina: J. Nucl. Mater., 2003, vol. 320, pp. 272–79.CrossRefADSGoogle Scholar
  35. 35.
    A.W. Funkenbush and L.F. Coffin: Metall. Trans. A, 1978, vol. 9A, pp. 1159–67.ADSGoogle Scholar
  36. 36.
    R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 4th ed., Wiley, New York, NY, 1996, pp. 591–686.Google Scholar
  37. 37.
    P.K. Liaw, T.R. Leax, and J.K. Donald: Acta Metall., 1987, vol. 35, no. 7, pp. 1415–32.CrossRefGoogle Scholar
  38. 38.
    S. Suresh and R.O. Ritchie: Metall. Trans. Phys. Metall. Mater., 1982, vol. 13, no. 9, pp. 1627–31.CrossRefADSGoogle Scholar
  39. 39.
    P.K. Liaw and W.A. Logsdon: Eng. Fract. Mech., 1985, vol. 22, no. 1, pp. 115–21.CrossRefGoogle Scholar
  40. 40.
    H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng. A, 1994, vol. 176, pp. 191–202.CrossRefGoogle Scholar
  41. 41.
    J. Lufrano and P. Sofronis: Acta Mater., 1998, vol. 46, no. 5, pp. 1519-26.CrossRefGoogle Scholar
  42. 42.
    W.S. Gorsky: Phys. Zeitschr. Sowjetunion, 1935, vol. 8, pp. 457.Google Scholar
  43. 43.
    H. Numakura: Solid State Phenom., 2003, vol. 89, pp. 93–114.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2010

Authors and Affiliations

  • Elena Garlea
    • 1
    • 2
  • Hahn Choo
    • 1
    • 3
  • Gongyao Y. Wang
    • 1
  • Peter K. Liaw
    • 1
  • Bjørn Clausen
    • 4
  • Donald W. Brown
    • 5
  • Jungwon Park
    • 1
    • 6
  • Philip D. Rack
    • 1
  • Edward A. Kenik
    • 7
  1. 1.Department of Materials Science and EngineeringThe University of TennesseeKnoxvilleUSA
  2. 2.Applied Technologies DivisionY-12 National Security ComplexOak RidgeUSA
  3. 3.Neutron Scattering Science DivisionOak Ridge National LaboratoryOak RidgeUSA
  4. 4.LANSCE-LCLos Alamos National LaboratoryLos AlamosUSA
  5. 5.MST-8Los Alamos National LaboratoryLos AlamosUSA
  6. 6.dpiX, LLCColorado SpringsUSA
  7. 7.Material Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations