Metallurgical and Materials Transactions A

, Volume 41, Issue 10, pp 2507–2521 | Cite as

Effect of Friction Stir Processing on Microstructure and Tensile Properties of an Investment Cast Al-7Si-0.6Mg Alloy

  • Saumyadeep Jana
  • Rajiv S. MishraEmail author
  • John A. Baumann
  • Glenn J. Grant


Friction stir processing (FSP) is emerging as a promising tool for microstructural modification. The current study assesses the effects of FSP on the microstructure and mechanical properties of an investment cast Al-7Si-Mg alloy. FSP eliminates porosity and significantly refines eutectic Si particles. The extent of particle refinement varied with changes in processing conditions. A high tool rotation rate and a low-to-intermediate tool traverse speed generated a higher volume fraction of finer particles. Tensile ductility changed significantly as a result of FSP, whereas ultimate tensile strength improved only marginally. Yield strength was similar in both cast and FSP samples under various heat-treated conditions, with the highest value obtained after a T6 heat treatment. Furthermore, FSP caused significant grain refinement in the stir zone, subsequently transforming into very coarse grains as abnormal grain growth occurred during solution treatment at high temperature.


Friction Stir Welding Friction Stir Welding Friction Stir Processing Abnormal Grain Growth Tool Rotation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was performed under the NSF-IUCRC for Friction Stir Processing. Additional support is acknowledged from NSF-IIP (0531019), General Motors, and Friction Stir Link for the Missouri S&T site. This report was prepared as an account of work sponsored by an agency of the United States Government. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.


  1. 1.
    D.L. Zhang and L. Zheng: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3983-91.CrossRefADSGoogle Scholar
  2. 2.
    T. Din and J. Campbell: Mater. Sci. Technol., 1996, vol. 12, pp. 644-50.Google Scholar
  3. 3.
    Y.B. Yu, P.Y. Song, S.S. Kim, and J.H. Lee: Scripta Mater., 1999, vol. 41, pp. 767-71.CrossRefGoogle Scholar
  4. 4.
    J. Jorstad and W. Rasmussen: Aluminum Casting Technology, 2nd D.L. Zalensas, ed., AFS Inc., Schaumburg, IL, 1993, p. 77.Google Scholar
  5. 5.
    S. Kumai, J. Hu, Y. Higo, and S. Nunomura: Acta. Mater., 1996, vol. 44, pp. 2249-57.CrossRefGoogle Scholar
  6. 6.
    B. Zhang, D.R. Poirier, and W. Chen: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2659-66.CrossRefGoogle Scholar
  7. 7.
    M.E. Seniw, J.G. Conley, and M.E. Fine: Mater. Sci. Eng. A, 2000, vol. A285, pp. 43-48.Google Scholar
  8. 8.
    G. Atxaga, A. Pelayo, and A.M. Irisarri: Mater. Sci. Technol., 2001, vol. 17, pp. 446-50.CrossRefGoogle Scholar
  9. 9.
    K.T. Kashyap, S. Murali, K.S. Raman, and K.S.S. Murthy: Mater. Sci. Technol., 1993, vol. 9, pp. 189-203.Google Scholar
  10. 10.
    L. Wang and S. Shivkumar: Z. Metallkd., 1995, vol. 86, pp. 441-45.Google Scholar
  11. 11.
    T.J. Hurley and R.G. Atkinson: Trans. Am. Foundry Soc., 1985, vol. 91, pp. 291-96.Google Scholar
  12. 12.
    W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes: Patent UK 9125978.8, 1991.Google Scholar
  13. 13.
    Z.Y. Ma, S.R. Sharma, and R.S. Mishra: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3323-36.CrossRefADSGoogle Scholar
  14. 14.
    M.L. Santella, T. Engstrom, D. Storjohann, and T.Y. Pan: Scripta Mater., 2005, vol. 53, pp. 201-06.CrossRefGoogle Scholar
  15. 15.
    K. Nakata, Y.G. Kim, H. Fujii, T. Tsumura, and T. Komazaki: Mater. Sci. Eng. A, 2006, vol. 437, pp. 274-80.CrossRefGoogle Scholar
  16. 16.
    Z.Y. Ma, A.L. Pilchak, M.C. Juhas, and J.C. Williams: Scripta Mater., 2008, vol. 58, pp. 361-66.CrossRefGoogle Scholar
  17. 17.
    Z.Y. Ma: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 642-58.CrossRefADSGoogle Scholar
  18. 18.
    Y.J. Kwon, N. Saito, and I. Shigematsu: J. Mater. Sci. Lett., 2002, vol. 21, pp. 14737-6.CrossRefGoogle Scholar
  19. 19.
    Y.S. Sato, M. Urata, and H. Kokawa: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 625-35.CrossRefADSGoogle Scholar
  20. 20.
    W.J. Arbegast: Hot Deformation of Aluminum Alloys III, ed. Z. Jin, TMS, Warrendale, PA, 2003, pp. 313–27.Google Scholar
  21. 21.
    H. Schmidt, J. Hattel, and J. Wert: Modelling Simul. Mater. Sci. Eng., 2004, vol. 12, pp. 143-57.CrossRefADSGoogle Scholar
  22. 22.
    S. Murali, K.S. Raman, and K.S.S. Murthy: Mater. Sci. Forum, 1996, vol. 217-22, pp. 207-12.CrossRefGoogle Scholar
  23. 23.
    Q.G. Wang: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2887-99.CrossRefADSGoogle Scholar
  24. 24.
    L. Backurud, G. Chai, and J. Tamminen: Solidification Characteristics of aluminum Alloys, AFS/SKANAluminum, Des Plaines, IL, 1990, p. 128.Google Scholar
  25. 25.
    Z.Y. Ma, S.R. Sharma, and R.S. Mishra: Mater. Sci. Eng. A, 2006, vol. 433, pp. 269-78.CrossRefGoogle Scholar
  26. 26.
    D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, 2nd ed., Taylor and Francis, New York, NY, 1992.Google Scholar
  27. 27.
    F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon, Oxford, UK, 2002.Google Scholar
  28. 28.
    J-Q. Su, T.W. Nelson, and C.J. Sterling: Scripta Mater., 2005, vol. 52, pp. 135-40.CrossRefGoogle Scholar
  29. 29.
    K.V. Jata and S.L. Semiatin: Scripta Mater., 2000, vol. 43, pp. 743-49.CrossRefGoogle Scholar
  30. 30.
    J-Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney: Acta Mater., 2003, vol. 51, pp. 713-29.CrossRefGoogle Scholar
  31. 31.
    R.W. Fonda, J.F. Bingert, and K.J. Colligan: Scripta Mater., 2004, vol. 51, pp. 243-48.CrossRefGoogle Scholar
  32. 32.
    P.B. Prangnell and C.P. Heason: Acta Mater., 2005, vol. 53, pp. 3179-92.CrossRefGoogle Scholar
  33. 33.
    C.G. Rhodes, M.W. Mahoney, W.H. Bingel, and M. Calabrese: Scripta Mater., 2003, vol. 48, pp. 1451-55.CrossRefGoogle Scholar
  34. 34.
    J-Q. Su, T.W. Nelson, and C.J. Sterling: J. Mater. Res., 2003, vol. 18, pp. 1757-60.CrossRefADSGoogle Scholar
  35. 35.
    J-Q. Su, T.W. Nelson, and C.J. Sterling: Phil. Mag., 2006, vol. 86, pp. 1-24.CrossRefADSGoogle Scholar
  36. 36.
    M. Karlsen, S. Tangen, J. Hjelen, O. Frigarrd, and O. Grong: 3 rd Int. FSW Symp., Awaji Island, Japan, 2001.Google Scholar
  37. 37.
    R.S. Mishra, R.K. Islamgaliev, T.W. Nelson, Y. Hovanski, and M.W. Mahoney: Friction Stir Welding and Processing, TMS, New York, NY, 2001.Google Scholar
  38. 38.
    ASM: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, vol. 2, ASM INTERNATIONAL, Materials Park, OH, 1990.Google Scholar
  39. 39.
    D. Apelian, S. Shivkumar, and G. Sigworth: Trans. Am. Foundry Soc., 1989, pp. 727–42.Google Scholar
  40. 40.
    G.E. Totten and D.S. MacKenzie: Handbook of Aluminum, vol. 1, Marcel Dekker, New York, NY, 2003.Google Scholar
  41. 41.
    S. Shivkumar, C. Keller, and D. Apelian: Trans. Am. Foundry Soc., 1990, pp. 905–11.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2010

Authors and Affiliations

  • Saumyadeep Jana
    • 1
    • 2
  • Rajiv S. Mishra
    • 1
    Email author
  • John A. Baumann
    • 3
  • Glenn J. Grant
    • 2
  1. 1.Missouri University of Science and TechnologyRollaUSA
  2. 2.Pacific Northwest National LaboratoryRichlandUSA
  3. 3.Boeing Research and TechnologySt. LouisUSA

Personalised recommendations