Metallurgical and Materials Transactions A

, Volume 41, Issue 9, pp 2366–2376 | Cite as

Corrosion Mechanisms of Steel and Cast Iron by Molten Aluminum

  • David Balloy
  • Jean-Charles Tissier
  • Marie-Laurence Giorgi
  • Marc Briant
Article

Abstract

The corrosion mechanisms by liquid aluminum of three industrial materials have been studied: unalloyed steel (UAS), and ferritic and modified pearlitic cast irons (FCI and PCI, respectively). The behavior of these materials when in contact with liquid aluminum is different. Aluminum diffuses deep into the UAS and forms intermetallic compounds with iron at the surface and in the steel matrix. At the surface, only Fe2Al5 and FeAl3 are found. In the matrix, FeAl2 also is formed in agreement with the equilibrium Fe-Al diagram. From the matrix to FeAl2, the Al content in the ferrite increases progressively until Al saturation is reached. At this step, black elongated precipitates (Al4C3 and/or graphite) appear. Graphite lamellas present in both FCI and PCI constitute an efficient barrier to the Al diffusion. The high silicon content of the FCI leads to the formation of a phase free from Al and saturated in Si. For the PCI, a thin layer rich in Al and Si, which is formed between the matrix and Fe2Al5, limits the diffusion of atoms. The effects of Cr and P added in the PCI also are discussed.

References

  1. 1.
    P. Bastien and S. Daeschner: Communication au XXIème Congrès de l’Association Technique de Fonderie, 1947.Google Scholar
  2. 2.
    C. Podrzucki and A. Kosowski: Rev. Métall.: 1968, vol. 2, pp. 137-44.Google Scholar
  3. 3.
    V.I. Galkin, P.P. Zhevtunov, and E.S. Solov’ev: Russ. Cast. Prod., 1973, vol. 10, pp. 406-07.Google Scholar
  4. 4.
    D. Balloy and J.C. Tissier: Steel Res. Int., 2007, vol. 78, pp. 167-72.Google Scholar
  5. 5.
    A. Reynaud: Corrosion et fontes, Editions Techniques des Industries de la Fonderie, 2006.Google Scholar
  6. 6.
    S.W. Banovic, J.N. Dupont, and A.R. Marder, Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1805-17.CrossRefGoogle Scholar
  7. 7.
    F. Gatto and E. Hugony: Rapporto Mese Alumin., 1982, vol. 11, pp. 35-40.Google Scholar
  8. 8.
    F.A. Mountford and T.J. Glover: Foundry Trade J., 1966, vol. 23, pp. 849-52.Google Scholar
  9. 9.
    D. Balloy and J.C. Tissier: Matériaux 2006, Dijon, France, 2006.Google Scholar
  10. 10.
    H. Baker: ASM Handbook, vol. 3: Alloy Phase Diagrams, ASM International, Materials Park, OH, 1992.Google Scholar
  11. 11.
    C.H. Defrancq, J. Van Eeghem, and A. De Sy: Hommes Fonder., 1974, vol. 47, pp. 19-22.Google Scholar
  12. 12.
    C.H. Defrancq, J. Van Eeghem, and A. De Sy: Fonder. Belge, 1970, vol. 4, pp. 22-31.Google Scholar
  13. 13.
    S. Parent-Simonin and J.C. Margerie: Fonderie, 1975, vol. 343, pp. 87-99.Google Scholar
  14. 14.
    H. Laplanche: Métallurgie, 1970, vol. 102, pp. 499-512.Google Scholar
  15. 15.
    V.N. Eremenko, N.D. Lesnik, T.S. Pestun, and V.R. Ryabov: Translated from Poroshkovaya Metallurgiya, 1973, vol. 7, pp. 58-62.Google Scholar
  16. 16.
    T. Maitra and S.P. Gupta: Mater. Char., 2003, vol. 49, pp. 293-311.CrossRefGoogle Scholar
  17. 17.
    J.C. Tissier: Ph.D. Dissertation, Université des Sciences et Thechnologies de Lille Flandre-Artois, Cedex, France, 1991.Google Scholar
  18. 18.
    D.L. Joslin, D.S. Easton, C.T. Liu, and S.A. David: Mater. Sci. Eng. A, 1995, vols. 192-3, pp. 544-48.Google Scholar
  19. 19.
    J. Wang and S.-M. Chen: Surf. Coating. Tech., 2006, vol. 200, pp. 6601-05.CrossRefGoogle Scholar
  20. 20.
    D. Naoi and M. Kajihara: Mater. Sci. Eng. A, 2007, vol. 459, pp. 375-82.CrossRefGoogle Scholar
  21. 21.
    M. Yan and Z. Fan: J. Mater. Sci., 2000, vol. 35, pp. 1661-67.CrossRefGoogle Scholar
  22. 22.
    M. Kajihara: Acta Mater., 2004, vol. 52, pp. 1193-200.CrossRefGoogle Scholar
  23. 23.
    S. Parent-Simonin and J.C. Margerie: Techniques de l’Ingénieur, Dossier M1145: Traitement Thermique des Fontes, Editions Techniques de l’Ingénieur, Groupe WEKA, 2001.Google Scholar
  24. 24.
    T. Etter, P. Schultz, M. Weber, J. Metz, M. Wimmler, J.F. Löffler, and P.J. Uggowitzer: Mater. Sci. Eng. A, 2007, vol. 448, pp. 1-6.CrossRefGoogle Scholar
  25. 25.
    A. Urena, J. Rams, M.D. Escalera, and M. Sanchez: Compos. Sci. Tech., 2005, vol. 65, pp. 2025-38.CrossRefGoogle Scholar
  26. 26.
    M.X. Zhang and P.M. Kelly: Mater. Char., 1998, vol. 40, pp 159-68.CrossRefGoogle Scholar
  27. 27.
    H.I. Aaronson and G.S. Shiflet: Mater. Char., 2005, vol. 54, pp 177-81.CrossRefGoogle Scholar
  28. 28.
    C. Cordier-Robert, B. Forfert, B. Bolle, J.-J. Fundenberger, and A. Tidu: J. Mater. Sci., 2008, vol. 43, pp. 1241-48.CrossRefADSGoogle Scholar
  29. 29.
    D. Gonzales and O. D’Anafrigo: Rev. Fac. Ing., 2006, vol. 21, pp. 39-47.Google Scholar
  30. 30.
    J. Bénard, A. Michel, J. Philibert, and J. Talbot: Métallurgie Générale, Masson, Paris, France, 1969.Google Scholar
  31. 31.
    S.P. Gupta: Mater. Char., 2003, vol. 49, pp. 268-91.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2010

Authors and Affiliations

  • David Balloy
    • 1
  • Jean-Charles Tissier
    • 1
  • Marie-Laurence Giorgi
    • 2
  • Marc Briant
    • 3
  1. 1.Univ Lille Nord de FranceVilleneuve d’AscqFrance
  2. 2.Laboratoire de Génie des Procédés et des MatériauxÉcole Centrale ParisParisFrance
  3. 3.Commissariat a l’Energie AtomiqueGif-sur-YvetteFrance

Personalised recommendations