Metallurgical and Materials Transactions A

, Volume 41, Issue 9, pp 2269–2275 | Cite as

Effects of Changes in Chemistry and Testing Temperature on Mechanical Behavior of Al-Based Amorphous Alloy Ribbons



The effects of changes in composition, testing temperature, strain rate, and thermal exposure on the flow behavior of a series of Al-Gd-Ni-X amorphous alloy ribbons have been determined via hot microhardness and tension testing. It is shown that the addition of Fe, Co, and Fe/Co combination into these materials increases the strength, Tg, and Tx1 in addition to the activation energy for crystallization, whereas the window between Tg and Tx1 remains similar. The uniaxial tensile tests show these ribbons exhibit a high strength, around 1 GPa, at room temperature (RT), and the results also show that these ribbons maintain their strength, nearly 45 pct of their RT value, at temperatures near Tg. Scanning electron microscopy images of fracture surfaces obtained from tests conducted near Tg illustrate ductile rupture and homogeneous flow behavior near the fracture tip.


Metallic Glass Amorphous Alloy Slow Strain Rate Amorphous Ribbon Ductile Rupture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the DARPA-SAM 2 program for support through Pratt & Whitney Corporation. Supply of materials from Pratt & Whitney and Ames Laboratory is gratefully acknowledged. Useful discussions with A. L. Greer and G. J. Shiflet along with TEM conducted by Dinqiang Li are also appreciated.


  1. 1.
    A.L. Greer: Science, 1995, vol. 267, p. 1947.CrossRefPubMedADSGoogle Scholar
  2. 2.
    A. Inoue, K. Ohtera, A.P. Tsai, and T. Masumoto: Jpn. J. Appl. Phys., 1988, vol. 27, p. L280.CrossRefADSGoogle Scholar
  3. 3.
    Y. He, S.J. Poon, and G.J. Shiflet: Science, 1988, vol. 241, p. 1640.CrossRefPubMedADSGoogle Scholar
  4. 4.
    A. Inoue, S. Sobu, D.V. Louzguine, H. Kimura, and K. Sasamori: J. Mater. Res., 2004, vol. 19, p. 1539.CrossRefADSGoogle Scholar
  5. 5.
    B.C. Ko, P. Wesseling, O.L. Vatamanu, G.J. Shiflet, and J.J. Lewandowski: Intermetallics, 2002, vol. 10, p. 1099.CrossRefGoogle Scholar
  6. 6.
    M.C. Gao and G.J. Shiflet: Intermetallics, 2002, vol. 10, p. 1131.CrossRefGoogle Scholar
  7. 7.
    P. Wesseling, B.C. Ko, and J.J. Lewandowski: Scripta Mater., 2003, vol. 48, p. 1537.CrossRefGoogle Scholar
  8. 8.
    A. Inoue: Progr. Mater. Sci., 1998, vol. 43, p. 365.CrossRefGoogle Scholar
  9. 9.
    A. Zhu, S.J. Poon, and G.J. Shiflet: Scripta Mater., 2004, vol. 50, p. 1451.CrossRefGoogle Scholar
  10. 10.
    H.W. Yang, S.C. Tjong, and J.Q. Wang: Mater. Sci. Eng., 2005, vol. 406, p. 160.CrossRefGoogle Scholar
  11. 11.
    A.S. Nouri, Y. Liu, and J.J. Lewandowski: Metall. Mater. Trans. A, 2009, vol. 40A, p. 1314.CrossRefADSGoogle Scholar
  12. 12.
    T. Gloriant, M. Gich, S. Surnach, M.D. Baro, and A.L. Greer: J. Metastable Nanocryst. Mater., 2000, vol. 8, p. 365.CrossRefGoogle Scholar
  13. 13.
    H. Bakker: Enthalpies in Alloys: Miedema’s Semi-Empirical Model, Trans Tech Publications Inc., Zurich, Switzerland, 1998.Google Scholar
  14. 14.
    H.E. Kissinger: Anal. Chem., 1957, vol. 29, p. 1702.CrossRefGoogle Scholar
  15. 15.
    R. Yavari, J.J. Lewandowski, and J. Eckert: MRS Bulletin, 2007, vol. 32, p. 635.Google Scholar
  16. 16.
    P. Wesseling, B.C. Ko, L.O. Vatamani, G.J. Shiflet, and J.J. Lewandowski, Metall. Mater. Trans. A, 2008, vol. 39A, p. 1935.CrossRefADSGoogle Scholar
  17. 17.
    Z.C. Zhong, X.Y. Jiang, and A.L. Greer: Mater. Sci. Eng. A, 1997, vol. 226-228, p. 531.Google Scholar
  18. 18.
    T.G. Nieh, J. Wadsworth, C.T. Liu, T. Ohkubo, and Y. Hirotsu: Acta Mater., 2001, vol. 49, p. 2887.CrossRefGoogle Scholar
  19. 19.
    J. Lu, G. Ravichandran, and W.L. Johnson: Acta Mater., 2003, vol. 51, p. 3429.CrossRefGoogle Scholar
  20. 20.
    M. Bletry, P. Guyot, Y. Brechet, J.J. Blandin, and J.L. Soubeyroux: Intermetallics, 2004, vol. 12, p. 1051.Google Scholar
  21. 21.
    T.G. Nieh and J. Wadsworth: Scripta Mater., 2006, vol. 54, p. 387.CrossRefGoogle Scholar
  22. 22.
    A.H. Vormelker, O.L. Vatamanu, L. Kecskes, and J.J. Lewandowski: Metall. Mater. Trans. A, 2008, vol. 39A, p. 1922.CrossRefADSGoogle Scholar
  23. 23.
    C.A. Schuh, A.C. Lund, and T.G. Nieh: Acta Mater., 2004, vol. 52, p. 5879.CrossRefGoogle Scholar
  24. 24.
    L.A. Deibler and J.J. Lewandowski: Mater. Sci. Eng. A, 2010, vol. 527, p. 2214.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2010

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringCase Western Reserve UniversityClevelandUSA

Personalised recommendations