Advertisement

Metallurgical and Materials Transactions A

, Volume 41, Issue 10, pp 2691–2697 | Cite as

Analysis of Particle and Crystallite Size in Tungsten Nanopowder Synthesis

  • Olivia A. Graeve
  • Abhiram Madadi
  • Raghunath Kanakala
  • Kaustav Sinha
Article

Abstract

Tungsten nanopowders were synthesized by a low-temperature technique and then heat treated in a gaseous reductive atmosphere in order to study the phase evolution, crystallite size, and particle size of the powders as the heat treatment temperature was modified. Synthesis of the powders was carried out in aqueous media using NaBH4 as a reducing agent using careful control of the pH of the solutions. The XRD patterns of the as-synthesized powders showed an amorphous phase. After washing, energy dispersive spectroscopy showed that the powders had peaks for oxygen and tungsten. In order to promote crystallization and eliminate the oxygen, the powders were heat treated at 773 K, 923 K, and 1073 K (500 °C, 650 °C, and 800 °C) in a H2/CH4 reducing atmosphere for 2 hours. XRD after heat treatment showed α-W peaks for the powders treated at 1073 K and 923 K (800 °C and 650 °C) and a mixture of β-W and α-W for the powders treated at 773 K (500 °C). The crystallite sizes determined from X-ray peak broadening were 12, 16, and 20 nm, whereas the average particle sizes from dynamic light scattering were 260, 450, and 750 nm, for heat treatment temperatures of 773 K, 923 K, and 1073 K (500 °C, 650 °C, and 800 °C), respectively. The average crystallite size and particle sizes increased proportionally with the treatment temperature, in contrast to what has been found for some ceramics, in which as the heat treatment temperature is increased, the crystallite size increases, but the particle size stays constant.

Keywords

Tungsten Crystallite Size Spark Plasma Sinter Heat Treatment Temperature Tungsten Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This project was funded by a grant from the National Science Foundation under Grant Nos. CMMI 0645225 and CMMI 0913373. We are grateful to M. Ahmadian-Tehrani for help with the SEM and EDS measurements.

References

  1. 1.
    J.-S. Lee, B.-H. Cha, and Y.-S. Kang: Adv. Eng. Mater., 2005, vol. 7, pp. 467–73.CrossRefGoogle Scholar
  2. 2.
    A.V. Ragulya: Adv. Appl. Ceram., 2008, vol. 107, pp. 118–34.CrossRefGoogle Scholar
  3. 3.
    J.R. Groza: Nanostruct. Mater., 1999, vol. 12, pp. 987–92.CrossRefGoogle Scholar
  4. 4.
    Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi: J. Mater. Sci., 2006, vol. 41, pp. 763–77.CrossRefADSGoogle Scholar
  5. 5.
    O.A. Graeve, H. Singh, and A. Clifton: Ceram. Trans., 2006, vol. 194, pp. 209–23.Google Scholar
  6. 6.
    K. Sinha, B. Pearson, S.R. Casolco, J.E. Garay, and O.A. Graeve: J. Am. Ceram. Soc., 2009, vol. 92, pp. 2504–11.CrossRefGoogle Scholar
  7. 7.
    E. Lassner and W.D. Schubert: Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Kluwer Academic/Plenum Publishers, New York, NY, 1999.Google Scholar
  8. 8.
    H.H. Nersisyan, J.H. Lee, and C.W. Won: Combust. Flame, 2005, vol. 142, pp. 241–48.CrossRefGoogle Scholar
  9. 9.
    L. Xiong and T. He: Chem. Mater., 2006, vol. 18, pp. 2211–18.CrossRefGoogle Scholar
  10. 10.
    Y. Moriysohi, M. Futaki, S. Komatsu, and T. Ishigaki: J. Mater. Sci. Lett., 1997, vol. 16, pp. 347–49.CrossRefGoogle Scholar
  11. 11.
    H.-K. Kang: J. Nucl. Mater., 2004, vol. 335, pp. 1–4.CrossRefADSGoogle Scholar
  12. 12.
    M.H. Magnusson, K. Deppert, and J.-O. Malm: J. Mater. Res., 2000, vol. 15, pp. 1564–69.CrossRefADSGoogle Scholar
  13. 13.
    T. Ryu, H.Y. Sohn, K.S. Hwang, and Z.Z. Fang: Int. J. Refract. Met. H., 2009, vol. 27, pp. 149–54.CrossRefGoogle Scholar
  14. 14.
    R. Sarkar, P. Ghosal, M. Premkumar, A.K. Singh, K. Muralledharan, A. Chakraborti, T.P. Bagchi, and B. Sarma: Powder Metall., 2008, vol. 51, pp. 166–70.CrossRefGoogle Scholar
  15. 15.
    H. Lei, Y.-J. Tang, J.-J. Wei, J. Li, X.-B. Li, and H.-L. Shi: Ultrason. Sonochem., 2007, vol. 14, pp. 81–83.CrossRefPubMedGoogle Scholar
  16. 16.
    B.L. Cushing, V.L. Kolesnichenko, and C.J. O’Connor: Chem. Rev., 2004, vol. 104, pp. 3893–946.CrossRefPubMedGoogle Scholar
  17. 17.
    J.I. Martins, M.C. Nunes, R. Koch, L. Martins, and M. Bazzaoui: Electrochim. Acta, 2007, vol. 52, pp. 6443–49.CrossRefGoogle Scholar
  18. 18.
    M.E. Indig and R.N. Snyder: J. Electrochem. Soc., 1962, vol. 109, pp. 1104–06.CrossRefGoogle Scholar
  19. 19.
    C. Tsang, S.Y. Lai, and A. Manthiram: Inorg. Chem., 1997, vol. 36, pp. 2206–10.CrossRefPubMedGoogle Scholar
  20. 20.
    P. Scardi and M. Leoni: J. Appl. Crystallogr., 2006, vol. 39, pp. 24–31.CrossRefGoogle Scholar
  21. 21.
    K. Sinha, B. Kavlicoglu, Y. Liu, F. Gordaninejad, and O.A. Graeve: J. Appl. Phys., 2009, vol. 106, p. 064307.CrossRefADSGoogle Scholar
  22. 22.
    L.Gao and B.H. Kear: Nanostruct. Mater., 1995, vol. 5, pp. 555–69.CrossRefGoogle Scholar
  23. 23.
    O.A. Graeve, S. Varma, G. Rojas-George, D. Brown, and E.A. Lopez: J. Am. Ceram. Soc., 2006, vol. 89, pp. 926–31.CrossRefGoogle Scholar
  24. 24.
    O.A. Graeve, R. Kanakala, A. Madadi, B.C. Williams, and K.C. Glass: Biomaterials, 2010, vol. 31, pp. 4259–67.CrossRefPubMedGoogle Scholar
  25. 25.
    T.E.M. Staab, R. Krause-Rehberg, B. Vetter, B. Kieback, G. Lange, and P. Klimanek: J. Phys.: Condens. Matter, 1999, vol. 11, pp. 1787–806.CrossRefADSGoogle Scholar
  26. 26.
    O. Blaschko, M. Prem, and G. Lechtfried: Scripta Mater., 1996, vol. 34, pp. 1045–49.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2010

Authors and Affiliations

  • Olivia A. Graeve
    • 1
  • Abhiram Madadi
    • 2
  • Raghunath Kanakala
    • 1
  • Kaustav Sinha
    • 2
  1. 1.Kazuo Inamori School of EngineeringAlfred UniversityAlfredUSA
  2. 2.Department of Chemical and Metallurgical EngineeringUniversity of NevadaRenoUSA

Personalised recommendations