Metallurgical and Materials Transactions A

, Volume 41, Issue 6, pp 1391–1398 | Cite as

Multimodal Precipitation in the Superalloy IN738LC

  • Ercan BalikciEmail author
  • Dinc Erdeniz


IN738LC is a polycrystalline, nickel-base superalloy, which is used in aggressive environments at high temperatures. The required strength is provided by precipitate strengthening. Both unimodal and multimodal precipitate distributions are observed in IN738LC. After reaching a critical size, a unimodal precipitate microstructure transforms to a bimodal one. This transformation is controlled by the precipitate-matrix interface, which is under compression in IN738LC. As the unimodal precipitates grow, the strained interface, due to differential lattice parameter of the matrix and the precipitate phase, stops solute diffusion into the growing precipitates. Hence, the solute atoms, entrapped in the matrix, saturate the matrix and form new, fine precipitates. Dissolution of some large precipitates also supplies solute to supersaturate the matrix. On the other hand, a multimodal precipitate distribution tends to become unimodal at low aging temperatures and bimodal at high aging temperatures. Interestingly, the activation energy is calculated for the coarsening of large precipitates in multimodal distribution and is found to vary with aging time.


Solution Treatment Large Precipitate Growth Exponent Bimodal Size Distribution Bimodal Microstructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors appreciate the financial support provided by Bogazici University Scientific Research Projects (BAP) through Grant No. 05HA601. EB also acknowledges with gratitude the help in aging treatments by undergraduate senior student Mr. Mustafa Sengor and in metallography by MSc student Mr. Daghan Arpaci.


  1. 1.
    P.W. Schilke: GER 3569G, GE Energy Report, “Advanced Gas Turbine Materials and Coatings”, New York, NY, 2004.Google Scholar
  2. 2.
    C.G. Bieber and J.J. Galka: U.S. Patent No. 3,459,545, Aug. 5, 1969.Google Scholar
  3. 3.
    R.K. Sidhu, O.A. Ojo, and C.M. Chaturvedi: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 858–70.CrossRefADSGoogle Scholar
  4. 4.
    O.A. Ojo, N.L. Richards, and M.C. Chaturvedi: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 421–33.CrossRefGoogle Scholar
  5. 5.
    O.A. Ojo, N.L. Richards, and M.C. Chaturvedi: Mater. Sci. Technol., 2004, vol. 20, pp. 1027–34.CrossRefGoogle Scholar
  6. 6.
    R. Roshental and D.R.F. West: Mater. Sci. Technol., 1994, vol. 15, pp. 1387–94.Google Scholar
  7. 7.
    S. Behrouzghaemi and R.J. Mitchell: Mater. Sci. Eng. A, 2008, vol. 498, pp. 266–71.CrossRefGoogle Scholar
  8. 8.
    C.G. Bieber and J.R. Mihalisin: 2nd Int. Conf. on the Strength of Metals and Alloys, Pacific Grove, CA, 30 Aug–4 Sept 1970, The American Society for Metals, Metals Park, Ohio, 1970.Google Scholar
  9. 9.
    I.M. Lifshitz and V.V. Sloyozov: J. Phys. Chem. Solids, 1961, vol. 19 (1–2), pp. 35–50.CrossRefADSGoogle Scholar
  10. 10.
    C. Wagner: Z. Elektrochemie, 1961, vol. 65 (7–8), pp. 581–91.Google Scholar
  11. 11.
    A.J. Ardell: Acta Metall., 1972, vol. 20 (1), pp. 61–71.CrossRefGoogle Scholar
  12. 12.
    A.D. Brailsford and P. Wynblatt: Acta Metall., 1979, vol. 27 (3), pp. 489–97.CrossRefGoogle Scholar
  13. 13.
    C.K.L. Davies, P. Nash, and R.N. Stevens: Acta Metall., 1980, vol. 28 (2), pp. 179–89.CrossRefGoogle Scholar
  14. 14.
    K. Tsumuraya and Y. Miyata: Acta Metall., 1983, vol. 31 (3), pp. 437–52.CrossRefGoogle Scholar
  15. 15.
    J.A. Marqusee and J. Rose: J. Chem. Phys., 1984, vol. 80 (1), pp. 536–43.CrossRefADSGoogle Scholar
  16. 16.
    P.W. Voorhees and M.E. Glicksman: Acta Metall., 1984, vol. 32 (11), pp. 2001–11.CrossRefGoogle Scholar
  17. 17.
    E. Balikci, A. Raman, and R.A. Mirshams: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1993–2003.CrossRefGoogle Scholar
  18. 18.
    E. Balikci, R.A. Mirshams, and A. Raman: Z. Metallkd., 1999, vol. 90 (2), pp. 132–40.Google Scholar
  19. 19.
    R.J. Mitchell, M. Preuss, M.C. Hardy, and S. Tin: Mater. Sci. Eng. A, 2006, vol. 423, pp. 282–91.CrossRefGoogle Scholar
  20. 20.
    R.J. Mitchell and M. Preuss: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 615–27.CrossRefGoogle Scholar
  21. 21.
    J. Mao, K. Chang, W. Yang, K. Ray, S.P. Vaze, and D.U. Furrer: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2441–49.CrossRefGoogle Scholar
  22. 22.
    P.M. Sarosi, B. Wang, J.P. Simmons, Y. Wang, and M.J. Mills: Scripta Mater., 2007, vol. 57, pp. 767–70.CrossRefGoogle Scholar
  23. 23.
    Y.H. Wen, J.P. Simmons, C. Shen, C. Woodward, and Y. Wang: Acta Mater., 2003, vol. 51, pp. 1123–32.CrossRefGoogle Scholar
  24. 24.
    W.S. Rasband: Image J, U.S. National Institutes of Health, Bethesda, MD,, 1997–2007.
  25. 25.
    D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, 2nd ed., Chapman and Hall, New York, NY, 1992, pp. 112, 265, 315, and 316.Google Scholar
  26. 26.
    M. Durand-Charre: The Microstructure of Superalloys, Gordon and Breach Science Publishers, Amsterdam, 1997, pp. 68–69.Google Scholar
  27. 27.
    P.J. Henderson and M. McLean: Acta Metall., 1983, vol. 31 (8), pp. 1203–19.CrossRefGoogle Scholar
  28. 28.
    G.I. Rosen, S.F. Dirnfeld, M. Bamberg, and B. Prinz: Z. Metallkd., 1994, vol. 85, pp. 127–30.Google Scholar
  29. 29.
    P.K. Footner and B.P. Richards: J. Mater. Sci., 1982, vol. 17, pp. 2141–53.CrossRefADSGoogle Scholar
  30. 30.
    E. Balikci, R.E. Ferrell, Jr., and A. Raman: Z. Metallkd., 1999, vol. 90, pp. 141–46.Google Scholar
  31. 31.
    R.S. Moshtaghin and S. Asgari: Mater. Des., 2003, vol. 24, pp. 325–30.Google Scholar
  32. 32.
    A.J. Ardell and V. Ozolins: Nat. Mater., 2004, vol. 4, pp. 309–16.CrossRefADSGoogle Scholar
  33. 33.
    E. Balikci, A. Raman, and R.A. Mirshams: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2803–08.CrossRefGoogle Scholar
  34. 34.
    K. Dwarapureddy, E. Balikci, S. Ibekwe, and A. Raman: J. Mater. Sci., 2008, vol. 43 (6), pp. 1802–10.CrossRefADSGoogle Scholar
  35. 35.
    E. Balikci and A. Raman: J. Mater. Sci., 2000, vol. 35 (14), pp. 3593–97.CrossRefGoogle Scholar
  36. 36.
    E. Balikci and A. Raman: J. Mater. Sci., 2008, vol. 43, pp. 927–32.CrossRefADSGoogle Scholar
  37. 37.
    I. Roy, E. Balikci, S. Ibekwe and A. Raman: J. Mater. Sci., 2005, vol. 40, pp. 6207–15.CrossRefADSGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2010

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringBogazici UniversityIstanbulTurkey

Personalised recommendations