Metallurgical and Materials Transactions A

, Volume 41, Issue 8, pp 1973–1982 | Cite as

Effect of Ca and Rare Earth Elements on Impression Creep Properties of AZ91 Magnesium Alloy

  • B. Nami
  • H. Razavi
  • S. Mirdamadi
  • S.G. ShabestariEmail author
  • S.M. Miresmaeili


Creep properties of AZ91 magnesium alloy and AZRC91 (AZ91 + 1 wt pct RE + 1.2 wt pct Ca) alloy were investigated using the impression creep method. It was shown that the creep properties of AZ91 alloy are significantly improved by adding Ca and rare earth (RE) elements. The improvement in creep resistance is mainly attributed to the reduction in the amount and continuity of eutectic β(Mg17Al12) phase as well as the formation of new Al11RE3 and Al2Ca intermetallic compounds at interdendritic regions. It was found that the stress exponent of minimum creep rate, n, varies between 5.69 and 6 for AZ91 alloy and varies between 5.81 and 6.46 for AZRC91 alloy. Activation energies of 120.9 ± 8.9 kJ/mol and 100.6 ± 7.1 kJ/mol were obtained for AZ91 and AZRC91 alloys, respectively. It was shown that the lattice and pipe-diffusion-controlled dislocation climb are the dominant creep mechanisms for AZ91 and AZRC91 alloys, respectively. The constitutive equations, correlating the minimum creep rate with temperature and stress, were also developed for both alloys.


Creep Rate Stress Exponent Creep Property AZ91 Alloy AZ91 Magnesium Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P. Zhang: Scripta Mater., 2005, vol. 52, pp. 277–82.CrossRefGoogle Scholar
  2. 2.
    N. Balasubramani, A. Srinivasan, U.T.S. Pillai, and B.C. Pai: Mater. Sci. Eng. A, 2007, vol. 457, pp. 275–81.CrossRefGoogle Scholar
  3. 3.
    K.U. Kainer and F. von Buch: Magnesium—Alloys and Technology, Wiley-VCH, New York, NY, 2003, pp. 1–22.Google Scholar
  4. 4.
    A. Luo and M. Pekguleryuz: J. Mater. Sci., 1994, vol. 29 (20), pp. 5259–71.CrossRefADSGoogle Scholar
  5. 5.
    F.H. Froes, D. Eliezer, and E. Aghion: JOM, 1998, vol. 50 (9), pp. 30–34.CrossRefGoogle Scholar
  6. 6.
    B.L. Mordike and T. Ebert: Mater. Sci. Eng. A, 2001, vol. 302, pp. 37–45.CrossRefGoogle Scholar
  7. 7.
    D. Amberger, P. Eisenlohr, and M. Goken: Mater. Sci. Eng. A, 2009, vols. 510–511, pp. 398–402.Google Scholar
  8. 8.
    K. Hirai, H. Somekawa, Y. Takigawa, and K. Higashi: Mater. Sci. Eng. A, 2005, vol. 403, pp. 276–80.CrossRefGoogle Scholar
  9. 9.
    F. Kabirian and R. Mahmudi: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2190–201.CrossRefADSGoogle Scholar
  10. 10.
    F. Khomamizadeh, B. Nami, and S. Khoshkhooei: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3489–94.CrossRefGoogle Scholar
  11. 11.
    Y. Lu, Q. Wang, X. Zeng, W. Ding, C. Zhai, and Y. Zhu: Mater. Sci. Eng. A, 2000, vol. 278, pp. 66–76.Google Scholar
  12. 12.
    J. Wang, L. Wang, J. An, and Y. Liu: J. Mater. Eng. Perform., 2008, vol. 17, pp. 725–29.CrossRefGoogle Scholar
  13. 13.
    G. Wu, Y. Fan, H. Gao, C. Zhai, and Y.P. Zhu: Mater. Sci. Eng. A, 2005, vol. 408, pp. 255–63.CrossRefGoogle Scholar
  14. 14.
    D. Wenwen, S. Yangshan, M. Xuegang, X. Feng, Z. Min, and W. Dengyun: Mater. Sci. Eng. A, 2003, vol. 356, pp. 1–7.CrossRefGoogle Scholar
  15. 15.
    Y. Guangyin, W. Qudong, and D. Wenjiang: J. Mater. Sci., 2002, vol. 37, pp. 127–32.CrossRefGoogle Scholar
  16. 16.
    A Srinivasan, U.T.S. Pillai, and B.C. Pai: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2235–43.CrossRefADSGoogle Scholar
  17. 17.
    R. Ninomiya, T. Ojiro, and K. Kubota: Acta Metall. Mater., 1995, vol. 43, pp. 669–74.CrossRefGoogle Scholar
  18. 18.
    E. Aghion, B. Bronfin, F.V. Buch, S. Schumann, and H. Friedrich: JOM, 2003, vol. 55 (11), pp. 30–33.CrossRefGoogle Scholar
  19. 19.
    W. Qudong, C. Wenzhou, Z. Xiaoqin, L. Yizhen, D Wenjiang, Z. Yanping, X. Xiaoping: J. Mater. Sci., 2001, vol. 36, pp. 3035–40.CrossRefGoogle Scholar
  20. 20.
    Y. Wang, Q. Wang, C. Ma, W. Ding, and Y. Zhu: Mater. Sci. Eng. A, 2003, vol. 342, pp. 178–82.CrossRefGoogle Scholar
  21. 21.
    W. Qudong, L. Yizhen, Z. Xiaoqin, D. Wenjiang, Z. Yanping, L. Qinghua, and L. Jie: Mater. Sci. Eng. A, 1999, vol. 271, pp. 109–15.CrossRefGoogle Scholar
  22. 22.
    P. Li, B. Tang, and E.G. Kandalova: Mater. Lett., 2005, vol. 59, pp. 971–75CrossRefGoogle Scholar
  23. 23.
    D.R. Askeland: The Science and Engineering of Materials, Chapman and Hall, New York, NY, 1990.Google Scholar
  24. 24.
    B. Nami, S.G. Shabestari, S.M. Miresmaeili, H. Razavi, and S. Mirdamadi: J. Alloys Compd., 2010, vol. 489, pp. 570–75.CrossRefGoogle Scholar
  25. 25.
    B. Nami: Ph.D. Thesis, Iran University of Science and Technology, Tehran, Iran, 2010.Google Scholar
  26. 26.
    C. Park, X. Long, S. Haberman, S. Ma, I. Dutta, R. Mahajan, and S.G. Jadhav: J. Mater. Sci., 2007, vol. 42, pp. 5182–87.CrossRefADSGoogle Scholar
  27. 27.
    L. Peng, F. Yang, J.F. Nie, and J.C.M. Li: Mater. Sci. Eng. A, 2005, vols. 410–411, pp. 42–47.Google Scholar
  28. 28.
    K. Ishikawa, H. Watanabe, and T. Mukai: Mater. Lett., 2005, vol. 59, pp. 1511–15.CrossRefGoogle Scholar
  29. 29.
    S.M. Zhu, B.L. Mordike, and J.F. Nie: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1221–29.CrossRefGoogle Scholar
  30. 30.
    M.E. Kassner and M.T.P. Prado: Fundamentals of Creep in Metals and Alloys, 1st ed., Elsevier, New York, NY, 2004.Google Scholar
  31. 31.
    B. Kondori and R. Mahmudi: Metall. Mater. Trans. A, 2009, vol. 40, pp. 2007–15.CrossRefGoogle Scholar
  32. 32.
    S. Ji, M. Qian, and Z. Fan: Mater. Sci. Eng. A, 2006, vol. 434, pp. 7–12.CrossRefGoogle Scholar
  33. 33.
    H. Somekawa, K. Hirai, H. Watanabe, Y. Takigawa, and K. Higashi: Mater. Sci. Eng. A, 2005, vol. 407, pp. 53–61.CrossRefGoogle Scholar
  34. 34.
    B. Jing, S. Yangshan, X. Feng, X. Shan, Q. Jing, and T. Weijian: Scripta Mater., 2006, vol. 55, pp. 1163–66.CrossRefGoogle Scholar
  35. 35.
    M.D. Mathew, H. Yang, S. Movva, and K.L. Murty: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 99–105.CrossRefGoogle Scholar
  36. 36.
    S. Spigarelli, M. Cabibbo, E. Evangelista, M. Talianker, and V. Ezersky: Mater. Sci. Eng. A, 2000, vol. 289, pp. 172–81.CrossRefGoogle Scholar
  37. 37.
    T.G. Langdon: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 249–59.CrossRefGoogle Scholar
  38. 38.
    K. Milicka, J. Cadek, and P. Rys: Acta Metall., 1970, vol. 18, pp. 1071–82.CrossRefGoogle Scholar
  39. 39.
    L. Shi and D.O. Northwood: Acta Metall. Mater., 1994, vol. 42 (3), pp. 871–77.CrossRefGoogle Scholar
  40. 40.
    M. Regev, E. Aghion, A. Rosen, and M. Bamberger: Mater. Sci. Eng. A, 1998, vol. 52, pp. 6–16.Google Scholar
  41. 41.
    S. Spigarelli, M. Regev, E. Evangelista, and A. Rosen: Mater. Sci. Technol., 2001, vol. 17, pp. 627–38.Google Scholar
  42. 42.
    F. Kabirian and R. Mahmudi: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 116–27.CrossRefADSGoogle Scholar
  43. 43.
    M. Kunst, A.F. Bunk, G. Lesperance, P. Plamondon, and U. Glatzel: Mater. Sci. Eng. A, 2009, vols. 510–511, pp. 109–25.Google Scholar
  44. 44.
    L. Robinson and O.D. Sherby: Acta Metall., 1969, vol. 17, pp. 109–25.CrossRefGoogle Scholar
  45. 45.
    H. Baker: Alloys Phase Diagram, ASM INTERNATIONAL, Metals Park, OH, 1992.Google Scholar
  46. 46.
    K. Ozturk, Y. Zhong, A.A. Luo, and Z.K. Liu: JOM, 2003, vol. 55, pp. 40–44.CrossRefGoogle Scholar
  47. 47.
    S.M. Zhu, M.A. Gibson, J.F. Nie, M.A. Easton, and T.B. Abbott: Scripta Mater., 2008, vol. 58 (6), pp. 477–80.CrossRefGoogle Scholar
  48. 48.
    A.A. Luo, M.P. Balogh, and B.R. Powell: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 567–74.CrossRefGoogle Scholar
  49. 49.
    Y. Terada, R. Sota, N. Ishimatsu, T. Sato, and K. Ohori: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3029–32.CrossRefADSGoogle Scholar
  50. 50.
    W. Blum, P. Zhang, B. Watzinger, B.V. Grossmann, and H.G. Haldenwanger: Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 735–40.Google Scholar
  51. 51.
    S. Celotto and T.J. Bastow: Acta Mater., 2001, vol. 49, pp. 41–51.CrossRefGoogle Scholar
  52. 52.
    C.J. Bettles: Mater. Sci. Eng. A, 2003, vol. 348, pp. 280–88.CrossRefGoogle Scholar
  53. 53.
    X. Min, Y. Sun, F. Xue, W. Du, and D. Wu: Mater. Chem. Phys., 2002, vol. 78, pp. 88–93.CrossRefGoogle Scholar
  54. 54.
    B. Kondori and R. Mahmudi: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2014–21.CrossRefGoogle Scholar
  55. 55.
    M.S. Dargusch, S.M. Zhu, J.F. Nie, and G.L. Dunlop: Scripta Mater., 2009, vol. 60, pp. 116–19.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2010

Authors and Affiliations

  • B. Nami
    • 1
    • 2
  • H. Razavi
    • 1
    • 2
  • S. Mirdamadi
    • 1
    • 2
  • S.G. Shabestari
    • 1
    • 2
    Email author
  • S.M. Miresmaeili
    • 3
  1. 1.Center of Excellence for Advanced Materials and Processing (CEAMP)NarmakIran
  2. 2.School of Metallurgy and Materials EngineeringIran University of Science and Technology (IUST)NarmakIran
  3. 3.Department of Mechanical EngineeringShahid Rajaee Teacher Training University (SRTTU)LavizanIran

Personalised recommendations