Advertisement

Metallurgical and Materials Transactions A

, Volume 41, Issue 6, pp 1493–1501 | Cite as

Plastic Localization Phenomena in a Mn-Alloyed Austenitic Steel

  • G. Scavino
  • F. D’Aiuto
  • P. Matteis
  • P. Russo Spena
  • D. Firrao
Article

Abstract

A 0.5 wt pct C, 22 wt pct Mn austenitic steel, recently proposed for fabricating automotive body structures by cold sheet forming, exhibits plastic localizations (PLs) during uniaxial tensile tests, yet showing a favorable overall strength and ductility. No localization happens during biaxial Erichsen cupping tests. Full-thickness tensile and Erichsen specimens, cut from as-produced steel sheets, were polished and tested at different strain rates. During the tensile tests, the PL phenomena consist first of macroscopic deformation bands traveling along the tensile axis, and then of a series of successive stationary deformation bands, each adjacent to the preceding ones; both types of bands involve the full specimen width and yield a macroscopically observable surface relief. No comparable surface relief was observed during the standard Erichsen tests. Because the stress state is known to influence PL phenomena, reduced-width Erichsen tests were performed on polished sheet specimens, in order to explore the transition from biaxial to uniaxial loading; surface relief lines were observed on a 20-mm-wide specimen, but not on wider ones.

Keywords

Crosshead Speed Stack Fault Energy Surface Relief Dynamic Strain Aging Plastic Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

ArcelorMittal steelwork for steel procurement. P. Iulita, Fiat Auto Engineering & Design, for the SEM microstructural analysis. C. Pozzi, Politecnico di Torino, for the X-ray analyses. G.M.M. Mortarino, Politecnico di Torino, for collaboration in tensile testing and for useful discussion.

References

  1. 1.
    O. Grässel and G. Frommeyer: Mater. Sci. Technol., 1998, vol. 14, pp. 1213–16.Google Scholar
  2. 2.
    O. Grässel, L. Kruger, G. Frommeyer, and L.W. Meyer: Int. J. Plasticity, 2000, vol. 16, pp. 1391–1409.zbMATHCrossRefGoogle Scholar
  3. 3.
    P. Yang, Q. Xie, L. Meng, H. Ding, and Z. Tang: Scripta Mater., 2006, vol. 55, pp. 629–31.CrossRefGoogle Scholar
  4. 4.
    S. Vercammen, B. Blanpain, B.C.D. Cooman, and P. Wollants: Acta Metall., 2004, vol. 52, pp. 2005–12.Google Scholar
  5. 5.
    O. Bouaziz and N. Guelton: Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 246–49.Google Scholar
  6. 6.
    S. Allain, J.P. Chateau, and O. Bouaziz: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 143–47.Google Scholar
  7. 7.
    S. Allain, J.P. Chateau, and O. Bouaziz: Steel Res., 2002, vol. 73, pp. 299–302.Google Scholar
  8. 8.
    D. Cornette, P. Cugy, A. Hildenbrand, Bouzekri, and G. Lovato: Rev. Metall., 2005, Dec., pp. 905–18.Google Scholar
  9. 9.
    G. Frommeyer, U. Brux, and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438–46.CrossRefGoogle Scholar
  10. 10.
    J.K. Kim, L. Chen, H.S. Kim, S.K. Kim, G.S. Kim, Y. Estrin, and B.C. De Cooman: Steel Res. Int., 2009, vol. 80, pp. 493–98.Google Scholar
  11. 11.
    T.A. Lebedkina, M.A. Lebyodkin, J.P. Chateau, A. Jacques, and S. Allain: Mater. Sci. Eng. A, 2009, vol. 519, pp. 147–54.CrossRefGoogle Scholar
  12. 12.
    P.D. Zavattieri, V. Savic, L.G. Hector, J.R. Fekete, W. Tong, and Y. Xuan: Int. J. Plasticity, 2009, vol. 25, pp. 2298–2330.CrossRefGoogle Scholar
  13. 13.
    ASTM E112-96, Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, PA, 1996. DOI:  10.1520/E0112-96R04E02 Google Scholar
  14. 14.
    G.V. Raynor and V.G. Rivlin: Phase Equilibria in Iron Ternary Alloys, The Institute of Metals, London, 1988, pp. 168–76.Google Scholar
  15. 15.
    A.K. Chakrabarti and J.W. Spretnak: Metall. Trans. A, 1975, vol. 6A, pp. 733–36.ADSGoogle Scholar
  16. 16.
    A.K. Chakrabarti and J.W. Spretnak: Metall. Trans. A, 1975, vol. 6A, pp. 737–47.ADSGoogle Scholar
  17. 17.
    J.W. Spretnak and D. Firrao: Metall. Ital., 1980, vol. 72, pp. 525–34.Google Scholar
  18. 18.
    E. Rizzi and P. Häner: Int. J. Plasticity, 2004, vol. 20, pp. 121–65.zbMATHCrossRefGoogle Scholar
  19. 19.
    H. Louche, P. Vacher, and R. Arrieux: Mater. Sci. Eng. A, 2005, vol. 404, pp. 188–96.CrossRefGoogle Scholar
  20. 20.
    P. Hahner: Mater. Sci. Eng. A, 1996, vol. 207, pp. 208–16.CrossRefGoogle Scholar
  21. 21.
    M. Zaiser and P. Hahner: Phys. Status Solidi B, 1997, vol. 199, pp. 267–330.CrossRefADSGoogle Scholar
  22. 22.
    L.J. Cuddy and W.C. Leslie: Acta Metall., 1972, vol. 20, pp. 1157–67.CrossRefGoogle Scholar
  23. 23.
    Y.N. Dastur and W.C. Leslie: Metall. Trans. A, 1981, vol. 12A, pp. 749–59.ADSGoogle Scholar
  24. 24.
    W.S. Owen and M. Grujicic: Acta Mater., 1999, vol. 47, pp. 111–26.CrossRefGoogle Scholar
  25. 25.
    L. Remy and A. Pineau: Mater. Sci. Eng., 1977, vol. 28, pp. 99–107.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2010

Authors and Affiliations

  • G. Scavino
    • 1
  • F. D’Aiuto
    • 3
  • P. Matteis
    • 1
  • P. Russo Spena
    • 2
  • D. Firrao
    • 1
  1. 1.Department of Materials Science and Chemical Engineering (DISMIC)Politecnico di Torino (Torino Technical University)TorinoItaly
  2. 2.Department of Production Systems and Business Economics (DISPEA)Politecnico di Torino (Torino Technical University)TorinoItaly
  3. 3.Engineering & DesignFiat Group AutomobilesTorinoItaly

Personalised recommendations