Metallurgical and Materials Transactions A

, Volume 41, Issue 5, pp 1301–1312

Loading Rate Effect on Nanohardness of Soda-Lime-Silica Glass

  • Riya Chakraborty
  • Arjun Dey
  • Anoop Kumar Mukhopadhyay
Article

Abstract

To understand how hardness, the key design parameter for applications of brittle solids such as glass concerning contact deformation, is affected by loading rate variation, nanoindentation with a Berkovich tip was used to measure the nanohardness of a 330-μm-thick soda-lime-silica glass as a function of loading rate (1 to 1000 mN·s−1). The results showed for the very first time that, with variations in the loading rate, there was a 6 to 9 pct increase in the nanohardness of glass up to a threshold loading rate (TLR), whereafter it did not appreciably increase with further increase in loading rate. Further, the nanohardness data showed an indentation size effect (ISE) that obeyed the Meyer’s law. These observations were explained in terms of a strong shear stress component developed just beneath the nanoindenter and the related shear-induced deformation processes at local microstructural scale weak links. The significant or insignificant presence of shear-induced serrations in load depth plots and corresponding scanning electron microscopic evidence of a strong or mild presence of shear deformation bands in and around the nanoindentation cavity supported such a rationalization. Finally, a qualitative picture was developed for different deformation processes induced at various loading rates in glass.

References

  1. 1.
    R.F. Cook and G.M. Pharr: J. Am. Ceram. Soc., 1990, vol. 73, pp. 787–817.CrossRefGoogle Scholar
  2. 2.
    B.R. Lawn: J. Am. Ceram. Soc., 1998, vol. 81, pp. 1977–94.Google Scholar
  3. 3.
    T. Burgess and M. Ferry: Mater. Today, 2009, vol. 12, pp. 24–32.CrossRefGoogle Scholar
  4. 4.
    N.K. Mukhopadhyay and P. Paufler: Int. Mater. Rev., 2006, vol. 51, pp. 209–45.CrossRefGoogle Scholar
  5. 5.
    K.W. Peter: J. Non-Cryst. Solids, 1970, vol. 5, pp. 103–15.CrossRefADSGoogle Scholar
  6. 6.
    A. Arora, D.B. Marshall, and B.R. Lawn: J. Non-Cryst. Solids, 1979, vol. 31, pp. 415–28.CrossRefADSGoogle Scholar
  7. 7.
    J.T. Hagan: J. Mater. Sci., 1980, vol. 15, pp. 1417–24.CrossRefADSGoogle Scholar
  8. 8.
    F. Ernsberger: J. Non-Cryst. Solids, 1977, vol. 25, pp. 293–321.CrossRefADSGoogle Scholar
  9. 9.
    S. Yoshida, J.C. Sangleboeuf, and T. Rouxel: J. Mater. Res., 2005, vol. 20, pp. 3404–12.CrossRefADSGoogle Scholar
  10. 10.
    T.M. Gross and M. Tomozawa: J. Non-Cryst. Solids, 2008, vol. 354, pp. 4056–62.CrossRefADSGoogle Scholar
  11. 11.
    C.R. Kurkjian, G.W. Kammlott, and M.M. Chaudhri: J. Am. Ceram. Soc., 1995, vol. 78, pp. 737–44.CrossRefGoogle Scholar
  12. 12.
    T. Miura, Y. Benino, R. Sato, and T. Komatsu: J. Eur. Ceram. Soc., 2003, vol. 23, pp. 409–16.CrossRefGoogle Scholar
  13. 13.
    H. Ji, V. Keryvin, T. Rouxel, and T. Hammouda: Scripta Mater., 2006, vol. 55, pp. 1159–62.CrossRefGoogle Scholar
  14. 14.
    S.P. Gunnasekera and D.G. Holloway: Phys. Chem. Glasses, 1973, vol. 14, pp. 45–52.Google Scholar
  15. 15.
    C.J. Fairbanks, R.S. Polvani, S.M. Wiederhorn, B.J. Hockey, and B.R. Lawn: J. Mater. Sci. Lett., 1982, vol. 1, pp. 391–93.CrossRefGoogle Scholar
  16. 16.
    M. Yoshioka and N. Yoshioka: J. Appl. Phys., 1995, vol. 78, pp. 3431–37.CrossRefADSGoogle Scholar
  17. 17.
    L. Ainsworth: J. Soc. Glass Technol., 1954, vol. 38, pp. 479–500.Google Scholar
  18. 18.
    L. Hohne: Ullner C. VDI Berichte., 1995, vol. 1194, pp. 119–28.Google Scholar
  19. 19.
    K. Suzuki, Y. Benino, T. Fujiwara, and T. Komatsu: J. Am. Ceram. Soc., 2002, vol. 85, pp. 3102–04.CrossRefGoogle Scholar
  20. 20.
    J. Malzbender: J. Am. Ceram. Soc., 2003, vol. 86, pp. 2237–38.CrossRefGoogle Scholar
  21. 21.
    T. Komatsu: J. Am. Ceram. Soc., 2003, vol. 86, pp. 2239–40.CrossRefGoogle Scholar
  22. 22.
    C.L. Eriksson, P.L. Larsson, and D.J. Rowcliffe: Mater. Sci. Eng. A, 2003, vol. 340, pp. 193–203.CrossRefGoogle Scholar
  23. 23.
    J. Gong, H. Miao, and Z. Peng: Mater. Lett., 2004, vol. 58, pp. 1349–53.CrossRefGoogle Scholar
  24. 24.
    Z. Peng, J. Gong, and H. Miao: J. Eur. Ceram. Soc., 2004, vol. 24, pp. 2193–2201.CrossRefGoogle Scholar
  25. 25.
    K.O. Kese, Z.C. Li, and B. Bergman: Mater. Sci. Eng. A, 2005, vol. 404, pp. 1–8.CrossRefGoogle Scholar
  26. 26.
    K.O. Kese and Z.C. Li: Scripta Mater., 2006, vol. 55, pp. 699–702.CrossRefGoogle Scholar
  27. 27.
    P. Grau, G. Berg, H. Meinhard, and S. Mosch: J. Am. Ceram. Soc., 1998, vol. 81, pp. 1557–64.CrossRefGoogle Scholar
  28. 28.
    D.J. Morris and R.F. Cook: J. Am. Ceram. Soc., 2004, vol. 87, pp. 1494–1501.CrossRefGoogle Scholar
  29. 29.
    R.K. Kalia, A. Nakano, I. Szlufarska, and P. Vashishta: Proc. Users Group Conf. (DOD UGC’04) by IEEE Computer Society, Williamsburg, VA, June 7–11, 2004.Google Scholar
  30. 30.
    W.C. Oliver and G.M. Pharr: J. Mater. Res., 1992, vol. 7, pp. 1564–83.CrossRefADSGoogle Scholar
  31. 31.
    C.A. Schuh, T.G. Nieh, and Y. Kawamura: J. Mater. Res., 2002, vol. 17, pp. 1651–54.CrossRefADSGoogle Scholar
  32. 32.
    Y.I. Golovin, V.I. Ivolgin, V.A. Khonik, K. Kitagawa, and A.I. Tyurin: Scripta Mater., 2001, vol. 45, pp. 947–52.CrossRefGoogle Scholar
  33. 33.
    C.A. Schuh and T.G. Nieh: Acta Mater., 2003, vol. 51, pp. 87–99.CrossRefGoogle Scholar
  34. 34.
    O. Shikimaka and D. Grabco: J. Phys. D Appl. Phys., 2008, vol. 41, pp. 301–07.CrossRefGoogle Scholar
  35. 35.
    H. Bei, Z.P. Lu, and E.P. George: Phys. Rev. Lett., 2004, vol. 93, pp. 125504-1–125504-4.CrossRefADSGoogle Scholar
  36. 36.
    C.E. Packard and C.A. Schuh: Acta Mater., 2007, vol. 55, pp. 5348–58.CrossRefGoogle Scholar
  37. 37.
    H. Shang, T. Rouxel, M. Buckley, and C. Bernard: J. Mater. Res., 2006, vol. 21, pp. 632–38.CrossRefADSGoogle Scholar
  38. 38.
    R.W.K. Honeycombe: Plastic Deformation of Metals, 2nd ed., Edward Arnold Ltd., London, 1984, pp. 123–38.Google Scholar
  39. 39.
    A. Puthucode, R. Banerjee, S. Vadlakonda, R. Mirshams, and M.J. Kaufman: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1552–59.CrossRefADSGoogle Scholar
  40. 40.
    S. Shim, H. Bei, E.P. Georgea, and G.M. Pharr: Scripta Mater., 2008, vol. 59, pp. 1095–98.CrossRefGoogle Scholar
  41. 41.
    J. Li, K.J. Van Vliet, T. Zhu, S. Yip, and S. Suresh: Nature, 2002, vol. 418, pp. 307–10.CrossRefPubMedADSGoogle Scholar
  42. 42.
    Q. Ma and D.R. Clarke: J. Mater. Res., 1995, vol. 10, pp. 853–63.CrossRefADSGoogle Scholar
  43. 43.
    S.J. Bull, T.F. Page, and E.H. Yoffe: Phil. Mag. Lett., 1989, vol. 59, pp. 281–88.CrossRefADSGoogle Scholar
  44. 44.
    E.O. Bernhardt: Z. Metallkd., 1941, vol. 33, pp. 135–44.Google Scholar
  45. 45.
    W.D. Nix and H. Gao: J. Mech. Phys. Solids, 1998, vol. 46, pp. 411–25.MATHCrossRefADSGoogle Scholar
  46. 46.
    M.F. Horstemeyer, M.I. Baskes, and S.J. Plimpton: Acta Mater., 2001, vol. 49, pp. 4363–74.CrossRefGoogle Scholar
  47. 47.
    A. Iost and R. Bigot: J. Mater. Sci., 1996, vol. 31, pp. 3573–77.Google Scholar
  48. 48.
    H. Li, A. Ghosh, Y.H. Han, and R.C. Bradt: J. Mater. Res., 1993, vol. 8, pp. 1028–32.CrossRefADSGoogle Scholar
  49. 49.
    M.V. Swain and M. Wittling: Fracture Mechanics of Ceramics, R.C. Bradt, ed., Plenum Press, New York, NY, 1996, vol. 11, pp. 379–87.Google Scholar
  50. 50.
    J. Gong and Z. Guan: Mater. Lett., 2001, vol. 47, pp. 140–44.CrossRefGoogle Scholar
  51. 51.
    Y.X. Gao and H. Fan: J. Mater. Sci., 2002, vol. 37, pp. 4493–98.CrossRefGoogle Scholar
  52. 52.
    A. Dey, A.K. Mukhopadhyay, S. Gangadharan, M.K. Sinha, and D. Basu: J. Mater. Sci., 2009, vol. 44, pp. 4911–18.CrossRefADSGoogle Scholar
  53. 53.
    C. Hays and E.G. Kendall: Metallography, 1973, vol. 6, pp. 275–82.CrossRefGoogle Scholar
  54. 54.
    H. Li and R.C. Bradt: Mater. Sci. Eng. A, 1991, vol. 142, pp. 51–61.CrossRefGoogle Scholar
  55. 55.
    H.G.M. Kreuzer and R. Pippan: Acta Mater., 2007, vol. 55, pp. 3229–35.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2010

Authors and Affiliations

  • Riya Chakraborty
    • 1
    • 2
  • Arjun Dey
    • 1
    • 2
  • Anoop Kumar Mukhopadhyay
    • 1
    • 2
  1. 1.Mechanical Test Section, Non-Oxide Ceramic and Composite DivisionCentral Glass and Ceramic Research InstituteKolkataIndia
  2. 2.Council of Scientific and Industrial ResearchNew DelhiIndia

Personalised recommendations