Strain Hardening Behavior of Dual-Phase Steels

  • V. Colla
  • M. De Sanctis
  • A. Dimatteo
  • G. Lovicu
  • A. Solina
  • R. Valentini


A detailed qualitative and quantitative examination of the microstructure and mechanical properties of three different classes of DP600 and DP450 dual-phase (DP) steels was carried out. The tested DP steels are characterized by different alloying elements: aluminum, boron, and phosphorus. Among them, aluminum DP steels showed the lowest percentages of hard phases, while phosphorus DP steels exhibited the highest resistance values. The Hollomon, Pickering, Crussard–Jaoul (CJ), and Bergstrom models were used to reproduce the strain hardening behavior of DP steels. Relationships that correlate the fitting parameters with the chemical composition and the thermal cycle parameters were found, and the predictive abilities of different models were evaluated. The Pickering equation, among the tested models, is the best one in the reproduction of the experimental stress-strain data.


  1. 1.
    M. Jeanneau and P. Pichant: La Rev. Métall., 2000, pp. 1399–1408.Google Scholar
  2. 2.
    D.T. Llewllyin and D.J. Hillis: Ironmaking and Steelmaking, 1996, vol. 23 (6), pp. 471–78.Google Scholar
  3. 3.
    H. Ding, Z.Y. Tang, W. Li, M. Wang, and D. Song: J. Iron Steel Res. Int., 2006, vol. 13 (6), pp. 66–70.CrossRefGoogle Scholar
  4. 4.
    A. Bag, K.K. Ray, and E.S. Dwarakadasa: Metall. Mater. Trans. A, 1999, vol. A30, pp. 1193–1202.CrossRefGoogle Scholar
  5. 5.
    W.M. Sing and K.P. Rao: J. Mater. Proc. Technol., 1997, vol. 63, pp. 105–10.CrossRefGoogle Scholar
  6. 6.
    B.M. Hance and T.M. Link: Proc. 44th Iron and Steel Society Mechanical Working and Steel Processing Conf., Orlando, FL, Sept. 2002, pp. 467–81.Google Scholar
  7. 7.
    H. Vegter, Y. An, C.H.L.J. ten Horn, E.H. Atzema, and M.E. Roelofsen: 6th Int. Conf. Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes, Detroit, MI, 2005, AIP, College Park, MD, 2005, pp. 365–70.Google Scholar
  8. 8.
    B.K. Jha, R. Avtar, V.S. Dwivedi, and V. Ramaswamy: J. Mater. Sci. Lett., 1987, vol. 6, pp. 891–93.CrossRefGoogle Scholar
  9. 9.
    D.A. Korzekwa, D.K. Matlock, and G. Krauss: Metall. Trans. A, 1984, vol. 15A, pp. 1221–28.ADSGoogle Scholar
  10. 10.
    Z. Jiang, J. Lian, and J. Chen: Mater. Sci. Technol., 1992, vol. 8, pp. 1075–81.Google Scholar
  11. 11.
    M. Umemoto, Z.G. Liu, S. Sugimoto, and K. Tsuchiya: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1785–93.CrossRefGoogle Scholar
  12. 12.
    T. Huper, S. Endo, N. Ishikawa, and K. Osawa: ISIJ Int., 1999, vol. 39 (3), pp. 288–94.CrossRefGoogle Scholar
  13. 13.
    F.B. Pickering: Toward Improved Ductility and Toughness–Conf. Proc., ISIJ/JIM and Climax Molybdenum Company (Japan) Limited, Kyoto, Japan, 1971, pp. 9–31.Google Scholar
  14. 14.
    D.W. Suh, J.H. Bae, J.Y. Cho, K.H. Oh, and H.C. Lee: ISIJ Int., 2001, vol. 41 (7), pp. 782–87.CrossRefGoogle Scholar
  15. 15.
    Z. Jiang, Z. Guan, and J. Lian: Mater. Sci. Eng., 1995, vol. A190, pp. 55–64.Google Scholar
  16. 16.
    A. Soderberg and U. Sellgren: NAFEMS World Congr. 2005, Malta, May 17–20, 2005.Google Scholar
  17. 17.
    A. Galtier, O. Bouaziz, and A. Lambert: Mécanique Industries, 2002, vol. 3, pp. 457–62.Google Scholar
  18. 18.
    F.J. Zerilli: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2547–55.CrossRefGoogle Scholar
  19. 19.
    S. Serajzadeh: ISIJ Int., 2003, vol. 43 (7), pp. 1050–55.CrossRefGoogle Scholar
  20. 20.
    A.H. Van den Boogaard, H.H. Wisselink, and J. Huétink: Adv. Mater. Res., 2005, vols. 6–8, pp. 71–80.CrossRefGoogle Scholar
  21. 21.
    Y. Bergstrom and W. Roberts: Acta Metall., 1973, vol. 21, pp. 741–45.CrossRefGoogle Scholar
  22. 22.
    N.K. Balliger and T. Gladman: Met. Sci., 1981, vol. 15, pp. 95–108.Google Scholar
  23. 23.
    Y. Tomota and I. Tamura: Trans. ISIJ, 1982, vol. 22, pp. 665–77.Google Scholar
  24. 24.
    H.C. Chen, H. Era, and M. Shimizu: Metall. Trans. A, 1989, vol. 20A, pp. 437–46.ADSGoogle Scholar
  25. 25.
    J. Mahieu, D. Van Dooren, and B.C. De Cooman: Int. Conf. on TRIP-Aided High Strength Ferrous Alloys, Ghent, Belgium, June 19–21, Wissenschaftsverlag Mainz GmbH, Aachen, Germany, 2002, pp. 159–64.Google Scholar
  26. 26.
    M. Mazinani and W.J. Poole: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 328–39.CrossRefADSGoogle Scholar
  27. 27.
    J. Lian, Z. Jiang, and J. Liu: Mater. Sci. Eng., 1991, vol. A 147, pp. 55–65.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2009

Authors and Affiliations

  • V. Colla
    • 1
  • M. De Sanctis
    • 2
  • A. Dimatteo
    • 1
  • G. Lovicu
    • 2
  • A. Solina
    • 2
  • R. Valentini
    • 2
  1. 1.Scuola Superiore di Studi Universitari e di Perfezionamento Sant’Anna – PisaPisaItaly
  2. 2.Dipartimento di Ingegneria Chimica, Chimica Industriale e Scienza dei materialiUniversità di Pisa – PisaPisaItaly

Personalised recommendations