Metallurgical and Materials Transactions A

, Volume 40, Issue 11, pp 2718–2728 | Cite as

Mechanisms for Solidification Crack Initiation and Growth in Aluminum Welding

Article

Abstract

In the present work, mechanisms are proposed for solidification crack initiation and growth in aluminum alloy 6060 arc welds. Calculations for an interdendritic liquid pressure drop, made using the Rappaz–Drezet–Gremaud (RDG) model, demonstrate that cavitation as a liquid fracture mechanism is not likely to occur except at elevated levels of hydrogen content. Instead, a porosity-based crack initiation model has been developed based upon pore stability criteria, assuming that gas pores expand from pre-existing nuclei. Crack initiation is taken to occur when stable pores form within the coherent dendrite region, depending upon hydrogen content. Following initiation, crack growth is modeled using a mass balance approach, controlled by local strain rate conditions. The critical grain boundary liquid deformation rate needed for solidification crack growth has been determined for a weld made with a 16 pct 4043 filler addition, based upon the local strain rate measurement and a simplified strain rate partitioning model. Combined models show that hydrogen and strain rate control crack initiation and growth, respectively. A hypothetical hydrogen strain rate map is presented, defining conceptually the combined conditions needed for cracking and porosity.

Notes

Acknowledgment

The authors are grateful to BAM for providing internal funding for this research.

References

  1. 1.
    J.C. Lippold: Hot Cracking Phenomena in Welds, Springer-Verlag, Berlin Heidelberg, Germany, 2005, pp. 271–90.CrossRefGoogle Scholar
  2. 2.
    J.C.M. Farrar: Hot Cracking Phenomena in Welds, Springer, New York, NY, 2005, pp. 291–04.CrossRefGoogle Scholar
  3. 3.
    H. Heuser: Hot Cracking Phenomena in Welds, Springer, New York, NY, 2005, pp. 305–27.CrossRefGoogle Scholar
  4. 4.
    J. Campbell: Castings, Butterworth-Heinemann, Oxford, Great Britain, 1991.Google Scholar
  5. 5.
    R.A. Chihoski: Weld. J., 1972, vol. 51 (1), pp. 9s–18s.Google Scholar
  6. 6.
    T. Zacharia: Weld. J., 1994, vol. 73 (7), pp. 164s–172s.Google Scholar
  7. 7.
    Z. Feng: Weld. World, 1994, vol. 33, pp. 340–47.Google Scholar
  8. 8.
    D.G. Eskin, W.H. Suyitno, and L. Katgerman: Progr. Mater. Sci., 2004, vol. 49, pp. 629–711.CrossRefGoogle Scholar
  9. 9.
    D.G. Eskin and L. Katgerman: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1511–19.CrossRefADSGoogle Scholar
  10. 10.
    Suyitno, W.H. Kool, and L. Katgerman: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1537–46.Google Scholar
  11. 11.
    C.E Cross: Hot Cracking Phenomena in Welds, Springer, New York, NY, 2005, pp. 3–18.CrossRefGoogle Scholar
  12. 12.
    C.E. Cross and N. Coniglio: Hot Cracking Phenomena in Welds II, Springer, New York, NY, 2008, pp. 39–58.Google Scholar
  13. 13.
    M. Rappaz, J.-M. Drezet, and M. Gremaud: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 449–55.CrossRefADSGoogle Scholar
  14. 14.
    V.N. Saveiko: Russ. Cast. Prod., 1961, (11), pp. 453–56.Google Scholar
  15. 15.
    C.H. Dickhaus, L. Ohm, and S. Engler: AFS Trans., 1994, vol. 101, pp. 677–84.Google Scholar
  16. 16.
    D.J. Lahaie and M. Bouchard: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 697–705.CrossRefADSGoogle Scholar
  17. 17.
    W.S. Pellini: Foundry, 1952, vol. 80, pp. 125–99.Google Scholar
  18. 18.
    N.N. Prokhorov: Svar. Proiz., 1956, vol. 6, pp. 5–11.Google Scholar
  19. 19.
    T. Senda, F. Matsuda, G. Takano, K. Watanabe, T. Kobayashi, and T. Matsuzaka: Trans. JWS, 1971, vol. 2 (2), pp. 141–62.Google Scholar
  20. 20.
    W.I. Pumphrey and P.H. Jennings: J. Inst. Met., 1948, vol. 75, pp. 235–56.Google Scholar
  21. 21.
    J.C. Borland: Brit. Weld. J., 1961, vol. 8, pp. 526–40.Google Scholar
  22. 22.
    U. Feurer: Proc. Int. Symp. Eng. Alloys, Delft University of Technology, Delft, The Netherlands, 1977, pp. 131–45.Google Scholar
  23. 23.
    J.C. Fisher: J. Appl. Phys., 1948, vol. 19, pp. 1062–67.CrossRefADSGoogle Scholar
  24. 24.
    H. Murakawa, H. Serizawa, and M. Shibahara: Mathematical Modelling of Weld Phenomena 7, TU Graz, Graz, Austria, 2005, pp. 539–54.Google Scholar
  25. 25.
    J.A. Williams and A.R.E. Singer: J. Inst. Met., 1968, vol. 96, pp. 5–12.Google Scholar
  26. 26.
    J.F. Grandfield, C.J. Davidson, and J.A. Taylor: Light Metals 2001, TMS, Warrendale, PA, 2001, pp. 895–901.Google Scholar
  27. 27.
    M. Braccini, C.L. Martin, M. Suéry, and Y. Bréchet: Modeling of Casting, Welding, and Advanced Solidification Processes IX, Shaker Verlag, Aachen, Germany, 2000, pp. 19–24.Google Scholar
  28. 28.
    M. Braccini, C.L. Martin, M. Suéry, and Y. Bréchet: Mater. Techniq., 2000, vols. 5–6, pp. 19–24.Google Scholar
  29. 29.
    C.V. Robino, M. Reece, G.A. Knorovsky, J.N. DuPont, and Z. Feng: Proc. 7th Int. Conf. Trends in Welding Research, ASM INTERNATIONAL, Materials Park, OH, 2005, pp. 313–18.Google Scholar
  30. 30.
    N. Coniglio, C.E. Cross, T. Michael, and M. Lammers: Weld. J., 2008, vol. 87 (8), pp. 237s–247s.Google Scholar
  31. 31.
    N. Coniglio: Doctoral Thesis, Otto-von-Guericke University, Magdeburg, Germany, BAM, Berlin, Germany, 2008.Google Scholar
  32. 32.
    L. Bäckerud, E. Krol, and J. Tamminen: Solidification Characteristics of Aluminum Alloys, Skanaluminum, Oslo, Norway, vol. 1, 1986, pp. 63–74.Google Scholar
  33. 33.
    B.T. Alexandrov and J.C. Lippold: IIW Doc. IX-2163-05, International Institute of Welding, Paris, France, 2005.Google Scholar
  34. 34.
    N. Coniglio and C.E. Cross: Weld. World, 2006, vol. 50 (11–12), Doc. IIW-1755-06, pp. 14–23.Google Scholar
  35. 35.
    N. Coniglio, C.E. Cross, I. Dörfel, and W. Österle: Mater. Sci. Eng., A, 2009, vol. 517, pp. 321–27.CrossRefGoogle Scholar
  36. 36.
    L.F. Mondolfo: Aluminum Alloys—Structure & Properties, Butterworth and Co., London, 1976, p. 63.Google Scholar
  37. 37.
    Aluminum, Vol. 1: Properties, Physical Metallurgy, and Phase Diagrams, K.R. Van Horn, ed., ASM, Metals Park, OH, 1967.Google Scholar
  38. 38.
    S. Ganesan, C.L. Chan, and D.R. Poirier: Mater. Sci. Eng., A, 1992, vol. A151, pp. 97–105.Google Scholar
  39. 39.
    D.E.J. Talbot: The Effects of Hydrogen in Aluminum and Its Alloys, Maney Publishing, London, 2004.Google Scholar
  40. 40.
    M. Rappaz, A. Jacot, and W.J. Boettinger: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 467–79.CrossRefGoogle Scholar
  41. 41.
    D. Warrington and D.G. McCartney: Cast Met., 1989, vol. 2 (3), pp. 134–43.Google Scholar
  42. 42.
    M.G. Mousavi, C.E. Cross, and Ø. Grong: Sci. Technol. Weld. Joining, 1999, vol. 4 (6), pp. 381–88.CrossRefGoogle Scholar
  43. 43.
    M.J. Dvornak, R.H. Frost, and D.L. Olson: Weld. J., 1989, vol. 68 (8), pp. 327s–337s.Google Scholar
  44. 44.
    L.A. Tarshis, J.L. Walker, and J.W. Rutter: Metall. Trans., 1971, vol. 2, pp. 2589–97.CrossRefGoogle Scholar
  45. 45.
    J. Campbell: The Solidification of Metals, Iron and Steel Institute, London, 1968, pp. 18–26.Google Scholar
  46. 46.
    R.A. Woods: Weld. J., 1974, vol. 53 (3), pp. 97s–108s.Google Scholar
  47. 47.
    R.P. Martukanitz and P.R. Michnuk: Trends in Welding Research, ASM, Metals Park, OH, 1982, pp. 315–30.Google Scholar
  48. 48.
    G. Huismann, F. Wittemann, T. Behrendt, and H. Krüger: IIW Doc. Commission IX, International Institute of Welding, Paris, France, 2004.Google Scholar
  49. 49.
    D.E.J. Talbot and D.A. Granger: J. Inst. Met., 1963–1964, vol. 92, pp. 290–97.Google Scholar
  50. 50.
    H. Toda, T. Hidaka, K. Minami, M. Kobayashi, K. Uesugi, Y. Suzuki, and T. Kobayashi: Proc. 11th Int. Conf. on Aluminum Alloys, Wiley-VCH, Weinheim, Germany, 2008, pp. 575–581.Google Scholar
  51. 51.
    J. Campbell: Brit. J. Appl. Phys., 1968, vol. 1 (2), pp. 1085–88.Google Scholar
  52. 52.
    S.N. Tiwari and J. Beech: Met. Sci., 1978, pp. 356–62.Google Scholar
  53. 53.
    N. Coniglio and C.E. Cross: Hot Cracking Phenomena in Welds II, Springer, New York, NY, 2008, pp. 277–310.CrossRefGoogle Scholar
  54. 54.
    H. Tamura, N. Kato, S. Ochiai, and Y. Katagiri: Trans. JWS, 1997, vol. 8 (2), pp. 16–22.Google Scholar
  55. 55.
    Y. Arata, F. Matsuda, K. Nakata, and K. Shinozaki: Trans. JWRI, 1977, vol. 6, pp. 91–104.CrossRefGoogle Scholar
  56. 56.
    F. Matsuda, H. Nakagawa, K. Nakata, and H. Okada: Trans. JWRI, 1979, vol. 8, pp. 85–95.Google Scholar
  57. 57.
    C.E. Cross and D.L. Olson: Proc. Int. Conf. on Aluminum Alloys: Physical and Mechanical Properties, University of Virginia, Charlottesville, Virginia, 1986, vol. III, pp. 1869–75.Google Scholar
  58. 58.
    C.E. Cross, D.L. Olson, and G.R. Edwards: Int. Conf. Proc. on Modeling and Control of Joining Processes, American Welding Society, Miami, FL, 1993, pp. 549–57.Google Scholar
  59. 59.
    R. Otsuka: Handbook of Aluminum, Vol. 1: Physical Metallurgy and Processes, Marcel Dekker, New York, NY, 2003, p. 661.Google Scholar
  60. 60.
    B. Dixon: IIW Asian Pacific Regional Welding Congress, Hobart, TAS, Australia, 1988, pp. 731–51.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2009

Authors and Affiliations

  1. 1.Federal Institute for Materials Research and Testing (BAM)BerlinGermany
  2. 2.University of AdelaideAdelaideAustralia

Personalised recommendations