Advertisement

Elementary Transformation and Deformation Processes and the Cyclic Stability of NiTi and NiTiCu Shape Memory Spring Actuators

  • Ch. Grossmann
  • J. FrenzelEmail author
  • V. Sampath
  • T. Depka
  • G. Eggeler
Article

Abstract

The present work addresses functional fatigue of binary NiTi and ternary NiTiCu (with 5, 7.5, and 10 at. pct Cu) shape memory (SM) spring actuators. We study how the alloy composition and processing affect the actuator stability during thermomechanical cycling. Spring lengths and temperatures were monitored and it was found that functional fatigue results in an accumulation of irreversible strain (in austenite and martensite) and in increasing martensite start temperatures. We present phenomenological equations that quantify both phenomena. We show that cyclic actuator stability can be improved by using precycling, subjecting the material to cold work, and adding copper. Adding copper is more attractive than cold work, because it improves cyclic stability without sacrificing the exploitable actuator stroke. Copper reduces the width of the thermal hysteresis and improves geometrical and thermal actuator stability, because it results in a better crystallographic compatibility between the parent and the product phase. There is a good correlation between the width of the thermal hysteresis and the intensity of irrecoverable deformation associated with thermomechanical cycling. We interpret this finding on the basis of a scenario in which dislocations are created during the phase transformations that remain in the microstructure during subsequent cycling. These dislocations facilitate the formation of martensite (increasing martensite start (M S ) temperatures) and account for the accumulation of irreversible strain in martensite and austenite.

Keywords

Austenite Martensite Martensitic Transformation Thermal Hysteresis Irreversible Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge funding through projects A1, A8, and C7 of the collaborative research center SFB459 (Shape Memory Technology) funded by the Deutsche Forschungsgemeinschaft (DFG), North Rhine-Westphalia, and the Ruhr University Bochum. The authors acknowledge assistance from and fruitful discussions with Drs. Jun Cui (providing λ 2 data), Klaus Neuking (processing of actuator springs), and Christoph Somsen (TEM), and fruitful discussions with Dr.-Ing. Martin Wagner (Emmy Noether Gruppe Zwillingsbildung, funded by DFG).

References

  1. 1.
    A. Ölander: Z. Kristall., 1932, vol. 84A, pp. 145–48.Google Scholar
  2. 2.
    L.C. Chang and T.A. Read: Trans. AIME, 1951, vol. 189, pp. 47–52.Google Scholar
  3. 3.
    J.W. Christian: The Theory of Transformation in Metals and Alloys, 3rd ed., Pergamon Press, Oxford, United Kingdom, 2002, pp. 1102–13.Google Scholar
  4. 4.
    H. Funakubo: Shape Memory Alloys, Gordon and Breach Science Publishers, New York, NY, 1984, pp. 27–30.Google Scholar
  5. 5.
    K. Otsuka and X. Ren: Prog. Mater. Sci., 2005, vol. 50, pp. 511–687.CrossRefGoogle Scholar
  6. 6.
    E. Hornbogen: in Advanced Structural and Functional Materials, W.G.J. Bunk, ed., Springer-Verlag, Heidelberg, Germany, 1991, pp. 133–63.Google Scholar
  7. 7.
    L. Delaey: in Phase Transformations in Materials, Materials Science and Technology–Comprehensive Treatment–Volume 5, R.W. Cahn, P. Haasen, and E.J. Kramer, eds., VCH, Weinheim, Germany, 1991, pp. 339–404.Google Scholar
  8. 8.
    K. Otsuka and C.M. Wayman: in Shape Memory Materials, K. Otsuka and C.M. Wayman, eds., Cambridge University Press, Cambridge, United Kingdom, 1998, pp. 1–26.Google Scholar
  9. 9.
    J. Van Humbeeck: Mater. Sci. Eng., A, 1999, vols. A273–A275, pp. 134–48.Google Scholar
  10. 10.
    G.S. Vanison: Mater. Des., 1986, vol. 7, pp. 142–46.Google Scholar
  11. 11.
    D. Stöckel: in Engineering Aspects of Shape Memory Alloys, T.W. Duerig, K.N. Melton, D. Stöckel, and C.M. Wayman, eds., Butterworth-Heinemann, Ltd., Tiptree, Essex, United Kingdom, 1990, pp. 283–94.Google Scholar
  12. 12.
    A.D. Johnson: State-of-the Art of Shape Memory Actuators, http://tinialloy.com.
  13. 13.
    I. Ohkata and Y. Suzuki: in Shape Memory Materials, K. Otsuka and C.M. Wayman, eds., Cambridge University Press, Cambridge, United Kingdom, 1998, pp. 240–66.Google Scholar
  14. 14.
    T. Duerig, A. Pelton, and D. Stöckel: Mater. Sci. Eng., A, 1999, vols. A273–A275, pp. 149–60.Google Scholar
  15. 15.
    H.J. Lee and J.J. Lee: Smart Mater. Struct., 2000, vol. 9, pp. 817–23.CrossRefADSGoogle Scholar
  16. 16.
    A.V. Srinivasan and D.M. McFarland: Smart Structures—Analysis and Design, Cambridge University Press, Cambridge, United Kingdom, 2001, pp. 26–72.Google Scholar
  17. 17.
    W. Tang, B. Sundmann, R. Sandström, and C. Quiu: Acta Mater., 1999, vol. 47, pp. 3457–68.CrossRefGoogle Scholar
  18. 18.
    D.C. Drennen, C.M. Jackson, and H.J. Wagner: “The Development of Melting and Casting Procedures for NiTinol Nickel-Base Alloys,” SC-CR-69-3070, Contract Report, Sandia Laboratories, Albuquerque, 1968.Google Scholar
  19. 19.
    J. Khalil-Allafi, A. Dlouhy, and G. Eggeler: Acta Mater., 2002, vol. 50, pp. 4255–74.CrossRefGoogle Scholar
  20. 20.
    W. Huang: Mater. Des., 2002, vol. 23, pp. 11–19.ADSGoogle Scholar
  21. 21.
    M. Mertmann and M. Wuttig: Proc. Actuator 2004, 9th Int. Conf. on New Actuators, HVG Hanseatische Veranstaltungs GmbH, Bremen, Germany, 2004, pp. 72–77.Google Scholar
  22. 22.
    B. Strnadel, S. Ohashi, H. Ohtsuka, T. Ishihara, and S. Miyazaki: Mater. Sci. Eng., A, 1995, vol. A202, pp. 148–56.Google Scholar
  23. 23.
    S. Miyazaki, K. Mizukoshi, T. Ueki, T. Sakuma, and Y. Liu: Mater. Sci. Eng., A, 1999, vols. A273–A275, pp. 658–63.Google Scholar
  24. 24.
    A. Biscarini, B. Coluzzi, G. Mazzolai, A. Tuissi, and F.M. Mazzolai: J. Alloys Compd., 2003, vol. 355 (1–2), pp. 52–57.CrossRefGoogle Scholar
  25. 25.
    H. Sehitoglu, I. Karaman, X. Zhang, A. Viswanath, Y. Chumlyakov, and H.J. Maier: Acta Mater., 2001, vol. 49 (17), pp. 3621–34.CrossRefGoogle Scholar
  26. 26.
    F.J. Gil and J.A. Planell: J. Biomed. Mater. Res., 1999, vol. 48 (5), pp. 682–88.CrossRefPubMedGoogle Scholar
  27. 27.
    R.H. Bricknell, K.N. Melton, and O. Mercier: Metall. Trans. A, 1979, vol. 10A, pp. 693–97.ADSGoogle Scholar
  28. 28.
    M. Mertmann: Memory Metalle, Wein am Rhein, personal communication, September 25, 2008.Google Scholar
  29. 29.
    J. Beyer, B. Koopman, P.A. Besseling, and P.F. Willemse: Mater. Sci. Forum, 1990, vols. 56–58, pp. 773–78.CrossRefGoogle Scholar
  30. 30.
    T. Waram, R. Sowerby, and M. Mailvaganam: SMST-97, Proc. 2nd Int. Conf. on Shape Memory and Superelastic Technologies, A. Pelton, D. Hodgson, S. Russel, and T. Duerig, eds., SMST, Santa Clara, CA, 1997, pp. 201–06.Google Scholar
  31. 31.
    S. Besseghini, L. Mirri, and A. Tuissi: SMST-97, Proc. 2nd Int. Conf. on Shape Memory and Superelastic Technologies, A. Pelton, D. Hodgson, S. Russel, and T. Duerig, eds., SMST, Santa Clara, CA, 1997, pp. 195–200.Google Scholar
  32. 32.
    G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, and M. Wagner: Mater. Sci. Eng., A, 2004, vol. A378, pp. 24–33.Google Scholar
  33. 33.
    M. Wagner, J.K. Yu, G. Kausträter, and G. Eggeler: Proc. Actuator 2004, 9th Int. Conf. on New Actuators, HVG Hanseatische Veranstaltungs GmbH, Bremen, Germany, 2004, pp. 629–32.Google Scholar
  34. 34.
    J. van Humbeeck: J. Phys. IV, 1991, vol. C4, pp. 189–87.Google Scholar
  35. 35.
    M. Sade, C. Damiani, R. Gastien, F.C. Lovey, J. Malarriy, and A. Yawny: Smart Mater. Struct., 2007, vol. 16, pp. 126–36.CrossRefADSGoogle Scholar
  36. 36.
    Z. Moumni, A. Van Herpen, and P. Riberty: Smart Mater. Struct., 2005, vol. 14, pp. 287–92.CrossRefADSGoogle Scholar
  37. 37.
    K. Gall and H.J. Maier: Acta Mater., 2002, vol. 50, pp. 4643–57.CrossRefGoogle Scholar
  38. 38.
    J. Olbricht: Mater. Sci. Eng., A, 2008, vols. A481–A482, pp. 142–45.Google Scholar
  39. 39.
    E. Hornbogen: J. Mater. Sci., 2004, vol. 39 pp. 385–99.CrossRefADSGoogle Scholar
  40. 40.
    C. Grossmann, J. Frenzel, V. Sampath, T. Depka, A. Oppenkowski, C. Somsen, K. Neuking, W. Theisen, and G. Eggeler: Mat.-wiss. Werkstofftech./Mater. Sci. Eng. Technol., 2008, vol. 39 (8), pp. 499–510.CrossRefGoogle Scholar
  41. 41.
    J. Cui, Y.S. Chu, O.O. Famodu, Y. Furuya, J. Hattrick-Simpers, R.D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z. Zhang, and I. Takeuchi: Nature Mater., 2006, vol., 5 pp. 286–90.CrossRefADSGoogle Scholar
  42. 42.
    J. Cui: Materials Analysis and Chemical Science, GE Global Research Center, Niskayuan, NY; Department of Materials Science and Engineering, University of Maryland, College Park, MD, personal communication, 2008.Google Scholar
  43. 43.
    J.M. Ball and R.D. James: Philos. Trans. R. Soc. London, Ser. A, 1992, vol. 338, pp. 389–450.zbMATHCrossRefADSGoogle Scholar
  44. 44.
    R.D. James and Z. Zhang: in Magnetism and Structure in Functional Materials, Springer Series in Materials Science, L. Manosa, A. Planes, and A. Saxena, eds., Springer, New York, NY, 2005, vol. 79, pp. 159–75.Google Scholar
  45. 45.
    J. Frenzel, Z. Zhang, Ch. Somsen, K. Neuking, and G. Eggeler: Acta Mater., 2007, vol. 55, pp. 1331–41.CrossRefGoogle Scholar
  46. 46.
    J. Burow, E. Prokofiev, C. Somsen, J. Frenzel, R.Z. Valiev, and G. Eggeler: Mater. Sci. For. Vols., 2008, vols. 584–586, pp. 852–57.Google Scholar
  47. 47.
    J. Frenzel, J. Pfetzing, K. Neuking, and G. Eggeler: Mater. Sci. Eng., A, 2008, vols. 481–482, pp. 635–38.Google Scholar
  48. 48.
    Z. Zhang, J. Frenzel, K. Neuking, and G. Eggeler: Mater. Trans. JIM, 2006, vol. 47 (3), pp. 661–69.CrossRefGoogle Scholar
  49. 49.
    J. Frenzel, Z. Zhang, K. Neuking, and G. Eggeler: J. Alloys Compd., 2004, vol. 385, pp. 214–23.CrossRefGoogle Scholar
  50. 50.
    Z. Zhang, J. Frenzel, K. Neuking, and G. Eggeler: Acta Mater., 2005, vol. 53 (14), pp. 3971–85.CrossRefGoogle Scholar
  51. 51.
    M. Frotscher, A. Kröger, C. Somsen, K. Neuking, R. Steegmüller, A. Schüßler, and G. Eggeler: Pract. Metallogr., 2007, vol. 44, pp. 208–20.Google Scholar
  52. 52.
    Ch. Grossmann, T. Depka, and A. Oppenkowski: Project Thesis, Institut für Werkstoffe, Ruhr-Universitaet Bochum, Bochum, Germany, 2007.Google Scholar
  53. 53.
    Dubbel—Taschenbuch für den Maschinenbau, W. Beitz and K.-H. Küttner, eds., 16. Auflage, Springer-Verlag, Berlin, 1987, p. G53.Google Scholar
  54. 54.
    S. Gollerthan, M.L. Young, A. Baruj, J. Frenzel, W.W. Schmahl, and G. Eggeler: Acta Mater., 2009, vol. 57, pp. 1015–25.CrossRefGoogle Scholar
  55. 55.
    T.H. Nam, T. Saburi, and K. Shimizu: Mater. Trans., JIM, 1990, vol. 31 (11), pp. 959–67.Google Scholar
  56. 56.
    O. Mercier and K.N. Melton: Metall. Trans. A, 1979, vol. 10A, pp. 387–89.ADSGoogle Scholar
  57. 57.
    K. Bhattacharya: Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect, Oxford University Press, Oxford, United Kingdom, 2004, pp. 143–50.Google Scholar
  58. 58.
    J. Ortin and L. Delaey: Int. J. Non-Lin. Mech., 2002, vol. 37, pp. 1275–81.zbMATHCrossRefGoogle Scholar
  59. 59.
    R. Delville, D. Schryvers, Z. Zhang, and R.D. James: Scripta Mater., 2009, vol. 60, pp. 293–96.CrossRefGoogle Scholar
  60. 60.
    Q.P. Sun, T.T. Xu, and X.Y. Zhang: J. Eng. Mater. Technol., 1999, vol. 121, pp. 38–43.CrossRefGoogle Scholar
  61. 61.
    D. Schryvers: TEM micrograph in Ref. 57.Google Scholar
  62. 62.
    R.F. Hamilton, H. Sehitoglu, Y. Chumlyakov, and H.J. Maier: Acta Mater., 2004, vol. 52, pp. 3383–3402.CrossRefGoogle Scholar
  63. 63.
    J. Perkins: Metall. Trans., 1973, vol. 4, pp. 2709–21.CrossRefGoogle Scholar
  64. 64.
    S. Miyazaki, Y. Igo, and K. Otsuka: Acta Metall., 1986, vol. 34, pp. 2045–51.CrossRefGoogle Scholar
  65. 65.
    S. Eucken and T.W. Duerig: Acta Metall., 1989, vol. 37, pp. 2245–52.CrossRefGoogle Scholar
  66. 66.
  67. 67.
    M. Wagner: Doctoral Thesis, Ruhr-Universität Bochum, Europäischer Universitätsverlag, Bochum, Germany, 2005.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2009

Authors and Affiliations

  • Ch. Grossmann
    • 1
  • J. Frenzel
    • 1
    Email author
  • V. Sampath
    • 2
  • T. Depka
    • 1
  • G. Eggeler
    • 1
  1. 1.Institute for MaterialsRuhr University BochumBochumGermany
  2. 2.Department of Metallurgical and Materials EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations