Nonisothermal and Cyclic Oxidation Behavior of Mo-Si-B and Mo-Si-B-Al Alloys

  • Sharma Paswan
  • R. MitraEmail author
  • S.K. Roy


A study on nonisothermal and cyclic oxidation behavior of the reaction-hot-pressed 76Mo-14Si-10B, 77Mo-12Si-8B-3Al, and 73.4Mo-11.2Si-8.1B-7.3Al alloys has been carried out in dry air, and the results have been compared with those of isothermal tests. Nonisothermal studies by thermogravimetric (TG) analysis up to 1300 °C have shown a transient mass gain between 700 °C and 860 °C, followed by a sharp mass loss with increased temperature, with the amount of mass change dependent on the heating rate (5 °C/min to 35 °C/min). The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies of oxide scales formed on the alloys held at 790 °C and 820 °C for 10 or 20 minutes suggest that the oxidation of α-Mo and Mo3Si precedes that of Mo5SiB2. Thermal cyclic tests involving exposure at 1150 °C for 1 hour, followed by either air cooling to room temperature (RT) or furnace cooling to 700 °C, 800 °C, or 900 °C, and the subsequent examination of oxidation products, have confirmed that the formation of B2O3-SiO2 scale provides complete and partial protection for the Mo-Si-B and Mo-Si-B-Al alloys, respectively. The results of this study show that oxidation resistance is deteriorated upon Al addition. Residual stress measured by XRD is found to be largely compressive in Mo and in mullite phases of oxide scales. Thermal shock and the mismatch in the coefficients of thermal expansion (CTEs) between the constituent phases of the oxide scale appear to be the main causes of damage.


Residual Stress MoO3 Oxide Scale Oxidation Behavior Mass Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial support of the Defence Research and Development Organization (New Delhi, India) for the present study is gratefully acknowledged. In addition, the authors thank Mr. M. Srinivasa Rao, Technical Officer, Defence Metallurgical Research Laboratory (Hyderabad, India), for assistance in processing the alloys. The assistance provided by Mr. A. Pariya, Mr. D.K. Sana, and Dr. R. Maiti with the SEM at the Central Research Facility, Indian Institute of Technology (Kharagpur, India), is gratefully acknowledged.


  1. 1.
    A.K. Vasudevan and J.J. Petrovic: Mater. Sci. Eng., A, 1992, vol. A155, pp. 1–17.Google Scholar
  2. 2.
    J.J. Petrovic and A.K. Vasudevan: Mater. Sci. Eng., A, 1999, vol. A261, pp. 1–5.Google Scholar
  3. 3.
    R. Mitra: Int. Mater. Rev., 2006, vol. 51 (1), pp. 13–64.CrossRefGoogle Scholar
  4. 4.
    F. Chu, D.J. Thoma, K. McClellan, P. Peralta, and Y. He: Intermetallics, 1999, vol. 7, pp. 611–20.CrossRefGoogle Scholar
  5. 5.
    I. Rosales and J.H. Schneibel: Intermetallics, 2000, vol. 8, pp. 885–89.CrossRefGoogle Scholar
  6. 6.
    D.P. Mason and D.C. Van Aken: Acta Metall. Mater., 1995, vol. 43, pp. 1201–10.CrossRefGoogle Scholar
  7. 7.
    M.K. Meyer, M.J. Kramer, and M. Akinc: Intermetallics, 1996, vol. 4, pp. 273–81.CrossRefGoogle Scholar
  8. 8.
    K. Ito, K. Ihara, K. Tanaka, M. Fujikura, and M. Yamaguchi: Intermetallics, 2001, vol. 9, pp. 591–602.CrossRefGoogle Scholar
  9. 9.
    T.G. Nieh, J.G. Wang, and C.T. Liu: Intermetallics, 2001, vol. 9, pp. 73–79.CrossRefGoogle Scholar
  10. 10.
    J.H. Schneibel: Intermetallics, 2003, vol. 11, pp. 625–32.CrossRefGoogle Scholar
  11. 11.
    J.H. Schneibel, M.J. Kramer, and D.S. Easton: Scripta Mater., 2002, vol. 46, pp. 217–21.CrossRefGoogle Scholar
  12. 12.
    J.J. Kruzic, J.H. Schneibel, and R.O. Ritchie: Scripta Mater., 2004, vol. 50, pp. 459–64.CrossRefGoogle Scholar
  13. 13.
    M.K. Meyer and M.J. Akinc: J. Am. Ceram. Soc., 1996, vol. 79 (4), pp. 938–44.CrossRefGoogle Scholar
  14. 14.
    D.M. Berczik: U.S. Patent No. 5595616, 1997.Google Scholar
  15. 15.
    D.M. Berczik, U.S. Patent No. 5693156, 1997.Google Scholar
  16. 16.
    V. Supatarawanich, D.R. Johnson, and C.T. Liu: Mater. Sci. Eng., A, 2003, vol. 344, pp. 328–39.CrossRefGoogle Scholar
  17. 17.
    S. Paswan, R. Mitra, and S.K. Roy: Intermetallics, 2007, vol. 15, pp. 1217–27.CrossRefGoogle Scholar
  18. 18.
    N.P. Bansal and R.H. Doremus: Handbook of Glass Properties, Academic Press, Orlando, FL, 1986, pp. 31–45.Google Scholar
  19. 19.
    K. Yanagihara, T. Maruyama, and K. Nagata: Intermetallics, 1996, vol. 4, pp. S133–S139.CrossRefGoogle Scholar
  20. 20.
    A. Stergiou and P. Tsakiropoulos: Intermetallics, 1997, vol. 5, pp. 117–26.CrossRefGoogle Scholar
  21. 21.
    K. Yanagihara, K. Przybylski, and T. Maruyama: Oxid. Met., 1997, vol. 46, pp. 277–93.CrossRefGoogle Scholar
  22. 22.
    S. Ochiai: Intermetallics, 2006, vol. 14, pp. 1351–57.CrossRefGoogle Scholar
  23. 23.
    A. Yamauchi, K. Yoshimi, Y. Murakami, K. Kurokawa, and S. Hanada: Solid State Phenom., 2007, vol. 127, pp. 215–20.CrossRefGoogle Scholar
  24. 24.
    S. Paswan, R. Mitra, and S.K. Roy: Mater. Sci. Eng., A., 2006, vol. 424, pp. 251–65.CrossRefGoogle Scholar
  25. 25.
    K. Yoshimi, S. Nakatani, S. Hanada, S.-H. Ko, and Y.-H. Park: Sci. Technol. Adv. Mater., 2002, vol. 3, pp. 181–92.CrossRefGoogle Scholar
  26. 26.
    D.A. Helmick: Doctoral Dissertation, University of Pittsburgh, Pittsburgh, PA, 2003.Google Scholar
  27. 27.
    M.K. Meyer, A.J. Thom, and M. Akinc: Intermetallics, 1999, vol. 7, pp. 153-162.CrossRefGoogle Scholar
  28. 28.
    M.G. Mendiratta, T.A. Parthasarathy, and D.M. Dimiduk: Intermetallics, 2002, vol. 10, pp. 225–32.CrossRefGoogle Scholar
  29. 29.
    F. Wang, A. Shan, X. Dong, and J. Wu: Scripta Mater., 2007, vol. 56, pp. 737–40.CrossRefGoogle Scholar
  30. 30.
    K. Yoshimi, S. Nakatanic, T. Sudac, S. Hanada, and H. Habazakid: Intermetallics, 2002, vol. 10, pp. 407–14.CrossRefGoogle Scholar
  31. 31.
    J.H. Schneibel and J.A. Sekhar: Mater. Sci. Eng., A, 2003, vol. 340, pp. 204–11.CrossRefGoogle Scholar
  32. 32.
    R. Mitra, A.K. Srivastava, N. Eswara Prasad, and S. Kumari: Intermetallics, 2006, vol. 14, pp. 1461–71.CrossRefGoogle Scholar
  33. 33.
    B.D. Cullity: Elements of X-Ray Diffraction, Addison Wesley Publishing Company, Inc., New York, NY, 1978, pp. 447–78.Google Scholar
  34. 34.
    E. Schumann, C. Sarioglu, J.R. Blachere, F.S. Pettit, and G.H. Meier: Oxid. Met., 2000, vol. 53 (3–4), pp. 259–72.CrossRefGoogle Scholar
  35. 35.
    C.A. Nunes, R. Sakidja, and J.H. Perepezko: in Structural Intermetallics 1997, M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracles, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA, 1997, pp. 831–39.Google Scholar
  36. 36.
    J.H. Perepezko, R. Sakidja, and S. Kim: Materials Research Society Symposia Proceedings, J.H. Schneibel, S. Hanada, K.J. Hemker, R.D. Noebe, G. Sauthoff, eds., Materials Research Society, Warrendale, PA, 2001, vol. 646, pp. N4.5.1–N4.5.12.Google Scholar
  37. 37.
    R. Sakidja and J.H. Perepezko: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 507–14.CrossRefADSGoogle Scholar
  38. 38.
    R.L. Drennan and M.E. Brown: Thermochim. Acta, 1992, vol. 208, pp. 201–21.CrossRefGoogle Scholar
  39. 39.
    T.A. Parthasarathy, M.G. Mendiratta, and D.M. Dimiduk: Acta Mater., 2002, vol. 50 (7), pp. 1857–68.CrossRefGoogle Scholar
  40. 40.
    I. Barin: Thermochemical Data of Pure Substances, VCH, Weinheim, Germany, 1989, vols. 1–2, pp. 1070–73, p. 1359.Google Scholar
  41. 41.
    F. Wang, A. Shan, X. Dong, and J. Wu: J. Alloys Compd., 2008, vol. 459, pp. 362–68.CrossRefGoogle Scholar
  42. 42.
    N.B. Pilling and R.E. Bedworth: J. Inst. Met., 1923, vol. 29, pp. 529–82.Google Scholar
  43. 43.
    U.K. Chatterjee, S.K. Bose, and S.K. Roy: Environmental Degradation of Metals, Marcel Dekker, New York, NY, 2001, pp. 179–281.Google Scholar
  44. 44.
    R. Krishnamurty and D.J. Srolovitz: Acta Mater., 2003, vol. 51 (8), pp. 2171–90.CrossRefGoogle Scholar
  45. 45.
    Z. Suo, D.V. Kubair, A.G. Evans, D.R. Clarke, and V.K. Tolpygo: Acta Mater., 2003, vol. 51, pp. 959–74.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2009

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of TechnologyKharagpurIndia

Personalised recommendations