Advertisement

The Fracture Toughness and Toughening Mechanism of Commercially Available Unalloyed Molybdenum and Oxide Dispersion Strengthened Molybdenum with an Equiaxed, Large Grain Structure

  • B.V. CockeramEmail author
Symposium: Materials for the Nuclear Renaissance

Abstract

Commercially available molybdenum and oxide dispersion strengthened (ODS) molybdenum produced by powder metallurgy (PM) methods were subjected to tensile testing, fracture toughness testing, and examination of the toughening mechanism. Both PM and ODS molybdenum have an equiaxed grain size that is larger in scale than comparable wrought products. This results in lower tensile strength and a higher tensile ductile-to-brittle transition temperature (DBTT) for PM and ODS molybdenum compared to wrought product forms. Although the grain size for PM molybdenum is large and the oxygen content is relatively high, both attributes tending to embrittle molybdenum, the transition temperature and fracture toughness values are comparable to those observed for wrought molybdenum. Crack initiation at grain boundaries and the center of grains where pores are present were observed to leave ligaments for the PM molybdenum that are similar in scale to those observed for wrought molybdenum. This is a similar toughening mechanism to the ductile laminate mechanism observed for wrought molybdenum. The larger oxide particle size for PM ODS molybdenum produces larger cracks that result in lower fracture toughness values and a higher DBTT in comparison to PM molybdenum. The impact of the grain size, grain shape, and oxide particles on the toughening mechanism and resulting properties is discussed.

Keywords

Molybdenum Fracture Toughness Oxide Dispersion Strengthened DBTT Molybdenum Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported under United States Department of Energy Contract No. DE-AC11-98PN38206. The advice and review of W.J. Mills, R.W. Smith, and J.E. Hack are much appreciated.

References

  1. 1.
    J.B. Lambert and J.J. Rausch: Materials Handbook, vol. 2, Non-Ferrous Alloys and Special-Purpose Materials, ASM INTERNATIONAL, Materials Park, OH, 1992, pp. 557–82.Google Scholar
  2. 2.
    J. Wadsworth: JOM, 2007, vol. 59 (2), pp. 41–47.CrossRefMathSciNetGoogle Scholar
  3. 3.
    R.E. Gold and D.L. Harrod: J. Nucl. Mater., 1979, vols. 85–86, pp. 805–15.CrossRefGoogle Scholar
  4. 4.
    B.L. Cox and F.W. Wiffen: J. Nucl. Mater., 1979, vols. 85–86, pp. 901–05.CrossRefGoogle Scholar
  5. 5.
    J. Wadsworth, T.G. Nieh, and J. J. Stephens: Int. Mater. Rev., 1988, vol. 33 (3), pp. 131–50.Google Scholar
  6. 6.
    B.A. Wilcox and A. Gibert: in Refractory Metals and Alloys IV—Research and Development, K.I Jaffee, G.M. Ault, J. Maltz, and M. Semchyshen, eds., Gordon and Breach, New York, NY, 1967, pp. 95–115.Google Scholar
  7. 7.
    A. Lawley: in Refractory Metals and Alloys IV— Research and Development, K.I Jaffee, G.M. Ault, J. Maltz, and M. Semchyshen, eds., Gordon and Breach, New York, NY, 1967, pp. 141–60.Google Scholar
  8. 8.
    B.S. Lemet and K. Kreder: in Refractory Metals and Alloys IV—Research and Development, K.I Jaffee, G.M. Ault, J. Maltz, and M. Semchyshen, eds., Gordon and Breach, New York, NY, 1967, pp. 161–83.Google Scholar
  9. 9.
    H. Kurishita, A. Oishi, H. Kubo, and H. Yoshinaga: Trans. J. Inst. Met., 1985, vol. 26 (5), pp. 341–52.Google Scholar
  10. 10.
    H. Kurishita and H. Yoshinaga: Mater. Forum, 1989, vol. 13, pp. 161–73.Google Scholar
  11. 11.
    S. Tsurelawa, T. Tanaka, and H. Yoshinaga: Mater. Sci. Eng., 1994, vol. A176, pp. 341–48.Google Scholar
  12. 12.
    A. Kumar and B.L. Eyre: Proc. R. Soc. London, 1980, vol. A370, pp. 431–58.ADSGoogle Scholar
  13. 13.
    B.V. Cockeram: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3685–3707.CrossRefGoogle Scholar
  14. 14.
    B.V. Cockeram: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1777–91.CrossRefGoogle Scholar
  15. 15.
    B.V. Cockeram: Mater. Sci. Eng., A, 2006, vol. 418, pp. 120–36.CrossRefGoogle Scholar
  16. 16.
    B.V. Cockeram and K.S. Chan: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2045–67.CrossRefADSGoogle Scholar
  17. 17.
    M. Semchyshen and R.Q. Barr: J. Less Common Met., 1966, vol. 11, pp. 1–13.CrossRefGoogle Scholar
  18. 18.
    C. Grandhi and M.F. Ashby: Acta Metall., 1979, vol. 27, pp. 1565–1602.CrossRefGoogle Scholar
  19. 19.
    J.C. Thornley and A.S. Wronski: Acta Metall., 1970, vol. 18, pp. 1053–62.CrossRefGoogle Scholar
  20. 20.
    A.A. Johnson, S.P. Gupta, and S.P. Kodali: Mater. Sci. Eng., 1975, vol. 18, pp. 159–61.CrossRefGoogle Scholar
  21. 21.
    S. Morozumi: Proc. Mechanical Properties of Bcc Metals, TMS-AIME, Warrendale, PA, 1982, pp. 197–205. Google Scholar
  22. 22.
    A. Lawley, J. Van den Sype, and R. Maddin: J. Inst. Met., 1962–1963, vol. 91, pp. 23–27.Google Scholar
  23. 23.
    G.W. Brock: Trans. AIME, 1961, vol. 221, pp. 1055–62.Google Scholar
  24. 24.
    W.D. Klopp: J. Less Common Met., 1975, vol. 42 pp. 261–78.CrossRefGoogle Scholar
  25. 25.
    J. Wadsworth, T.G. Nieh, and J.J. Stephens: Scripta Metall., 1986, vol. 20, pp. 637–42.CrossRefGoogle Scholar
  26. 26.
    M. Scibetta, R. Chaouadi, and J.L. Puzzolante: J. Nucl. Mater., 2000, vols. 283–287, pp. 455–60.CrossRefGoogle Scholar
  27. 27.
    J.A. Shields, P. Lipetzky, and A.J. Mueller: Proc. 15th Int. Plansee Seminar, G. Kneringer, P. Rodhammer, and H. Wildner, eds., Plansee Holding AG, Reutte, Austria, 2001, vol. 4, pp. 187–99.Google Scholar
  28. 28.
    J.J. Kruzic, J.H. Schneibel, and R.O. Ritchie: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2393–2402.CrossRefADSGoogle Scholar
  29. 29.
    G. Zhang, Y. Sun, C. Zuo, J. Wei, and J. Sun: Mater. Sci. Eng., A, 2008, vols. 483–484, pp. 350–52.Google Scholar
  30. 30.
    L. Wang, Y. Sun, J. Luo, Y. Zhu, and P. Niu: Mater. Sci. Forum, 2007, vols. 534–536, pp. 1265–68.CrossRefGoogle Scholar
  31. 31.
    D. Sturm, M. Heilmaier, J.H. Schneibel, P. Jehanno, B. Skrotzki, and H. Saage: Mater. Sci. Eng., A, 2007, vol. 463, pp. 107–14.CrossRefGoogle Scholar
  32. 32.
    I.M. Gunter, J.H. Schneibel, and J.J. Kruzic: Mater. Sci. Eng., A, 2007, vol. 458, pp. 275–80.CrossRefGoogle Scholar
  33. 33.
    D.L. Chen, B. Weiss, R. Stickler, M. Witwer, G. Leichtfried, and H. Hödl: High Temp. Mater. Processes, 1994, vol. 13, pp. 75–85.Google Scholar
  34. 34.
    D.L. Chen, B. Weiss, R. Stickler, M. Witwer, and G. Leichtfried: Proc. 13th Int. Plansee Seminar, H. Bildstein and R. Eck, eds., Metallwerk Plansee, Reutte, Austria, 1993, vol. 1, pp. 621–31.Google Scholar
  35. 35.
    A.Yu. Koval, A.D. Vasilev, and S.A. Firstov: Int. J. Refract. Met. Hard Mater., 1997, vol. 15, pp. 223–26.CrossRefGoogle Scholar
  36. 36.
    M. Danylenko: Modeling the Mechanical Response of Structural Materials, E.M. Taleff and R.K. Mahidhara, eds., TMS, Warrendale, PA, 1997, pp. 229–35.Google Scholar
  37. 37.
    M. Rödig, H. Derz, G. Pott, and B. Werner: Proc. 14th Int. Plansee Seminar, G. Kneringer, P. Rödhammer, and P. Wilharitz, eds., Metallwerk Plansee, Reutte, Austria, 1997, vol. 1, pp. 781–91.Google Scholar
  38. 38.
    C.W. Marschall and F.C. Holden: High Temperature Refractory Metals, Gordon-Breach Science Publishers, New York, NY, 1964, pp. 129–59.Google Scholar
  39. 39.
    H.E. Romine: Fracture Toughness at Room Temperature of Some Refractory Metals Based on Tungsten, Molybdenum or Columbium Which Are Being Considered for Use in the Nozzles of Large Solid Propellant Rockets, NWL Report No. 1873, U.S. Naval Weapons Laboratory, Dahlgren, VA, 1963.Google Scholar
  40. 40.
    K.S. Chan: Metall. Trans. A, 1989, vol. 20A, pp. 155–64.ADSGoogle Scholar
  41. 41.
    K.S. Chan: Metall. Trans. A, 1989, vol. 20A, pp. 2337–44.ADSGoogle Scholar
  42. 42.
    K.T. Venkateswara Rao, W. Yu, and R.O. Ritchie: Metall. Trans. A., 1988, vol. 19A, pp. 549–61.ADSGoogle Scholar
  43. 43.
    J.D. Embury, N.J. Petch, A.E. Wraith, and E.S. Wright: Trans. AIME, 1967, vol. 239, pp. 114–18.Google Scholar
  44. 44.
    S. Yokoshima and M. Yamaguchi: Acta Metall., 1996, vol. 44 (3), pp. 873–83.Google Scholar
  45. 45.
    R.R. Adharapurapu, K.S. Vecchio, A. Rohatgi, and F. Jiang: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3217–36.CrossRefGoogle Scholar
  46. 46.
    R. Bianco, R.W. Buckman, Jr., and C.B. Geller: High Strength, Creep-Resistant Molybdenum Alloy and Process for Producing the Same, U.S. Patent No. 5,868,876, Feb. 9, 1999.Google Scholar
  47. 47.
    A.J. Mueller, J.A. Shields, and R.W. Buckman, Jr.: Proc. 15th Int. Plansee Seminar, G. Kneringer, P. Rodhammer, and H. Wildner, eds., Plansee Holding AG, Reutte, Austria, 2001, vol. 1, pp. 485–97.Google Scholar
  48. 48.
    “ASTM E399-90 Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials,” Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 1997.Google Scholar
  49. 49.
    “ASTM E1820-01 Standard Test Method for Measurement of Fracture Toughness,” Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 2001.Google Scholar
  50. 50.
    “ASTM E8-00 Standard Test Method for Tension Testing of Metallic Materials,” Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 2001.Google Scholar
  51. 51.
    “ASTM E21-98 Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials,” Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 1998.Google Scholar
  52. 52.
    W.C. Coons: The Metal Molybdenum, ASM INTERNATIONAL, Materials Park, OH, 1958, p. 394.Google Scholar
  53. 53.
    S. Suresh and J.R. Brockenbrough: Acta Metall., 1988, vol. 36, pp. 1455–70.CrossRefGoogle Scholar
  54. 54.
    R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 2nd ed., John Wiley & Sons, New York, NY, 1983, pp. 269–348.Google Scholar
  55. 55.
    Z. Jiuxing, L. Lu, Z. Meiling, H. Yancao, and Z. Tieyong: Int. J. Refract. Met. Hard Mater., 1999, vol. 17, pp. 405–09.CrossRefGoogle Scholar
  56. 56.
    A. Saxena, D.C. Daly, H.A. Ernst, and K. Banerji: Fracture Mechanics: 21st Symp., ASTM STP 1074, J.P. Gudas, J.A. Joyce, and E.M. Hackett, eds., ASTM, West Conshohocken, PA, 1990, pp. 378–95.Google Scholar
  57. 57.
    J.W. Hutchinson: J. Mech. Phys. Solids, 1968, vol. 16, pp. 13–31.zbMATHCrossRefADSGoogle Scholar
  58. 58.
    J.R. Rice and G.F. Rosengren: J. Mech. Phys. Solids, 1968, vol. 16, pp. 1–12.zbMATHCrossRefADSGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2009

Authors and Affiliations

  1. 1.Bechtel-Bettis Atomic Power LaboratoryWest MifflinUSA

Personalised recommendations