Effect of Phosphorus and Strontium Additions on Formation Temperature and Nucleation Density of Primary Silicon in Al-19 Wt Pct Si Alloy and Their Effect on Eutectic Temperature

  • M. Faraji
  • I. Todd
  • H. Jones


The influence of P and Sr additions on the formation temperature and nucleation density of primary silicon in Al-19 wt pct Si alloy has been determined, for small volumes of melt solidified at cooling rates \( \dot{T} \) of ~0.3 and 1 K/s. The proportion of ingot featuring primary silicon decreased progressively with increased Sr addition, which also markedly reduced the temperature for first formation of primary silicon and the number of primary silicon particles per unit volume \( \bar{N}_{v} . \) When combined with previously published results, the effects of amount of P addition and cooling rate on \( \bar{N}_{v} \) are in reasonable accord with \( {{\bar{N}_{v} } \mathord{\left/ {\vphantom {{\bar{N}_{v} } {\dot{T}}}} \right. \kern-\nulldelimiterspace} {\dot{T}}} = \left( {\pi / 6f} \right)^{ 1/ 2} \) 109 [250 − 215 (wt pct P)0.17]−3, where \( \bar{N}_{v} \) is in mm−3, \( \dot{T} \) is in K/s, and f is volume fraction of primary silicon. Increased P addition reduces the eutectic temperature, while increased Sr appears to generate a minimum in eutectic temperature at about 100 ppmw Sr.


Eutectic Temperature Primary Silicon Sand Mold Random Section Arrest Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work formed part of an MPhil/PhD program at the University of Sheffield by MF, financed by the Iranian Government.


  1. 1.
    N. Tenekedjiev and J.E. Gruzleski: Cast Met., 1990, vol. 3 (2), pp. 96–105.Google Scholar
  2. 2.
    J.L. Jorstad: AFS Trans., 1996, vol. 104, pp. 669–71.Google Scholar
  3. 3.
    R.J. Donahue: Adv. Mater. Proc., 2002, vol. 160 (2), p. 11.Google Scholar
  4. 4.
    J. Cissé, G.F. Bolling, and H.W. Kerr: Metall. Trans. B, 1975, vol. 6B, pp. 195–97.ADSGoogle Scholar
  5. 5.
    M. Faraji, I. Todd, and H. Jones: J. Mater. Sci., 2005, vol. 40, pp. 6363–65.CrossRefADSGoogle Scholar
  6. 6.
    S. Terai: Sumitomo Met., 1958, vol. 10 (3), pp. 40–51.Google Scholar
  7. 7.
    P.B. Crosley and L.F. Mondolfo: AFS Trans., 1966, vol. 74, pp. 53–64.Google Scholar
  8. 8.
    G.A. Colligan and M.A. Gunes: AFS Trans., 1973, vol. 81, pp. 359–65.Google Scholar
  9. 9.
    N. Tenekedjiev, D. Argo, and J.E. Gruzleski: AFS Trans., 1989, vol. 97, pp. 127–36.Google Scholar
  10. 10.
    J. Chang, I. Moon, and C. Choi: J. Mater. Sci., 1998, vol. 33, pp. 5015–23.CrossRefGoogle Scholar
  11. 11.
    W.J. Kyffin, W.M. Rainforth, and H. Jones: Mater. Trans., 2001, vol. 42, pp. 2098–2101.CrossRefGoogle Scholar
  12. 12.
    Z.-H. Zhang, X.-F. Bian, Y. Wang, and X.-F. Liu: Trans. Nonferrous Met. Soc. China, 2001, vol. 11 (3), pp. 374–77.Google Scholar
  13. 13.
    X. Song, X. Bian, X. Qi, X. Liu, J. Zhang, B. Wang, and L. Zhu: J. Univ. Sci. Technol. Beijing, 2004, vol. 11 (1), pp. 81–84.Google Scholar
  14. 14.
    K. Nogita, S.D. McDonald, and A.K. Dahle: Phil. Mag., 2004, vol. 84, pp. 1683–96.CrossRefADSGoogle Scholar
  15. 15.
    F.C. Robles Hernandez and J.H Sokolowski: J. Alloys Compd., 2006, vol. 426, pp. 205–12.CrossRefGoogle Scholar
  16. 16.
    N. Nafisi, J. Hedjazi, S.M.A. Boutorabi, and R. Ghomashci: Light Metals 2004, Proc. Symp., A.T. Tobereaux, ed., Charlotte, NC, Mar. 14–18, 2004, TMS, Warrendale, PA, 2004, pp. 851–56.Google Scholar
  17. 17.
    D.C. Jenkinson and L.M. Hogan: J. Cryst. Growth, 1975, vol. 28, pp. 171–87.CrossRefADSGoogle Scholar
  18. 18.
    L. Clapham and R.W. Smith: J. Cryst. Growth, 1988, vol. 92, pp. 263–70.CrossRefADSGoogle Scholar
  19. 19.
    K. Nogita, H. Yasuda, K. Yoshida, K. Oesugi, A. Takeuchi, Y. Suzuki, and A.K. Dahle: Scripta Mater., 2006, vol. 55, pp. 787–90.CrossRefGoogle Scholar
  20. 20.
    C.I. Simensen, Ø. Nielsen, F. Hillion, and J. Voje: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1448–51.CrossRefADSGoogle Scholar
  21. 21.
    M.H. Kim, Y.M. Hong, and H.Y. Cho: Metall. Mater. Int., 2004, vol. 10, pp. 513–20.CrossRefGoogle Scholar
  22. 22.
    Y.H. Cho, H.-C. Lee, K.H. Oh, and A.K. Dahle: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2435–48.CrossRefADSGoogle Scholar
  23. 23.
    W.J. Kyffin, W.M. Rainforth, and H. Jones: J. Mater. Sci., 2001, vol. 36, pp. 2667–72.CrossRefGoogle Scholar
  24. 24.
    P. Mandal, A. Saha, and M. Chakraborty: AFS Trans., 1991, vol. 99, pp. 643–51.Google Scholar
  25. 25.
    J. Sulzer: Mod. Cast., 1961, vol. 39 (1), pp. 38–43.Google Scholar
  26. 26.
    J. Kaneko, M. Sugamata, and K.-I. Aoki: J. Jpn. Inst. Met., 1978, vol. 42, pp. 966–72; Trans. Jpn. Inst. Met., 1979, vol. 20, pp. 733–41.Google Scholar
  27. 27.
    B. Closset and J.E. Gruzleski: AFS Trans., 1981, vol. 89, pp. 801–08.Google Scholar
  28. 28.
    L. Bäckerud, G. Chai, and J. Tamminen: Solidification Characteristics of Aluminum Alloys, Foundry Alloys, AFS/Skanaluminum, Stockholm, 1990, vol. 2, pp. 33–38.Google Scholar
  29. 29.
    M. Faraji and L. Katgerman: Int. Foundry Res., 2009, vol. 61 (2), in press.Google Scholar
  30. 30.
    S.G. Shabestari and S. Ghodrat: Mater. Sci. Eng. A, 2007, vol. 467, pp. 150–58.CrossRefGoogle Scholar
  31. 31.
    M. Djurdjevic, H. Jiang, and J. Sokolowski: Mater. Charact., 2001, vol. 46, pp. 31–38.CrossRefGoogle Scholar
  32. 32.
    L. Heusler, and W. Schneider: J. Light Met., 2002, vol. 2, pp. 17–26.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2009

Authors and Affiliations

  1. 1.Department of Engineering MaterialsUniversity of SheffieldSheffieldUnited Kingdom
  2. 2.Department of MaterialsUniversity of SemnanSemnanIran

Personalised recommendations