Metallurgical and Materials Transactions A

, Volume 40, Issue 6, pp 1355–1366

Role of Austenitization and Pre-Deformation on the Kinetics of the Isothermal Bainitic Transformation

  • H.-G. Lambers
  • S. Tschumak
  • H. J. Maier
  • D. Canadinc


The role of time-temperature path on the isothermal austenite-to-bainite phase transformation of low alloy 51 CrV 4 steel was investigated and the corresponding microstructures were analyzed. The important finding is that an incomplete initial austenitization treatment leaves undissolved carbides in the matrix, such that lower carbon and chromium content in the matrix result, eventually accelerating the phase transformation. Furthermore, the residual carbides constitute additional nucleation sites for the bainite plates, speeding up the process even further. Also, both plastic pre-deformation of the supercooled austenite and application of external elastic stresses during the phase transformation lead to transformation plasticity by enhancing the stress fields, providing a driving force for the growth of bainite plates along a preferred orientation. Overall, the current results constitute the first step toward establishing a database for constructing a realistic microstructure-based model for simulating metal forming operations involving austenite-to-bainite phase transformation.


  1. 1.
    Atlas zur Wärmebehandlung der Stähle, Verlag Stahleisen, Düsseldorf, 1961.Google Scholar
  2. 2.
    J. Wei, O. Kessler, M. Hunkel, F. Hoffmann, and P. Mayr: Steel Res. Int., 2004, vol. 75 (11), pp. 759–65.Google Scholar
  3. 3.
    U. Weidig, K. Hübner, and K. Steinhoff: Steel Res. Int., 2008, vol 7 (1), pp. 59–65.Google Scholar
  4. 4.
    M. Maikranz-Valentin, U. Weidig, U. Schoof, H.-H. Becker, and K. Steinhoff: Steel Res. Int., 2008, vol 79 (2), pp. 92–97.Google Scholar
  5. 5.
    L.C. Chang and H.K.D.H. Bhadeshia: J. Mater. Sci., 1996, vol. 31, pp. 2145–48.CrossRefADSGoogle Scholar
  6. 6.
    U. Ahrens, G. Besserdich, and H.J. Maier: HTM, 2002, vol. 57 (2), pp. 99–105.Google Scholar
  7. 7.
    T. Antretter, F.D. Fischer, K. Tanaka, and G. Cailltaud: Steel Res. Int., 2002, vol. 73 (6,7), pp. 225–35.Google Scholar
  8. 8.
    A. Matsuzaki, H.K.D.H. Bhadeshia, and H. Harada: Acta Metall. Mater., 1994, vol. 42 (4), pp. 1081–90.CrossRefGoogle Scholar
  9. 9.
    P.H. Shipway and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 1995, vol. 201, pp. 143–49.CrossRefGoogle Scholar
  10. 10.
    P. Ding, T. Inoue, S. Imatani, D.-Y. Ju, and E. de Vries: Mater. Sci. Res. Int., 2001, vol. 7 (1), pp. 19–26.Google Scholar
  11. 11.
    J. Wei, O. Kessler, M. Hunkel, F. Hoffmann, and P. Mayr: Mater. Sci. Technol., 2004, vol. 20, pp. 909–14.CrossRefGoogle Scholar
  12. 12.
    J.B. Leblond, J. Devaux, and J.C. Devaux: Int. J. Plast., 1989, vol. 5, pp. 551–72.CrossRefGoogle Scholar
  13. 13.
    L. Taleb and F.A. Sidoroff: Int. J. Plast., 2003, vol. 19, pp. 1821–42.MATHCrossRefGoogle Scholar
  14. 14.
    M. Wolff, M. Böhm, G. Lowisch, and A. Schmidt: Comp. Mater. Sci., 2005, vol. 32, pp. 604–10.CrossRefGoogle Scholar
  15. 15.
    F. Marketz and F.D. Fischer: Modell. Simul. Mater. Sci. Eng., 1994, vol. 2, pp. 1017–46.CrossRefADSGoogle Scholar
  16. 16.
    G. Reisner, E.A. Werner, and F.D. Fischer: Int. J. Solids Struct., 1998, vol. 35 (19), pp. 2457–73.MATHCrossRefGoogle Scholar
  17. 17.
    F.D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, and T. Antretter: Int. J. Plast., 2000, vol. 16, pp. 723–48.MATHCrossRefGoogle Scholar
  18. 18.
    L. Taleb and S. Petit-Grostabussiat: J. Phys. IV, 2002, vol. 12, pp. Pr11 187–94.Google Scholar
  19. 19.
    S. Grostabussiat, L. Taleb, J.F. Jullien, and F. Sidoroff: J. Phys. IV, 2001, vol. 11, pp. Pr4 173–80.CrossRefGoogle Scholar
  20. 20.
    U. Ahrens, H.J. Maier, and A.EL.M. Maksoud: J. Phys. IV, 2004, vol. 120, pp. 615–23.Google Scholar
  21. 21.
    H.J. Maier, S. Tschumak, U. Weidig, and K. Steinhoff: Steel Res. Int., 2008, vol. 79 (2), pp. 105–10.Google Scholar
  22. 22.
    C.C. Liu, D.-Y. Yu, K.F. Yao, Z. Liu, and X.J. Xu: Mater. Sci. Technol., 2001, vol. 17, pp. 1229–37.CrossRefGoogle Scholar
  23. 23.
    L. Taleb and S. Petit: Int. J. Plast., 2006, vol. 22, pp. 110–30.MATHCrossRefGoogle Scholar
  24. 24.
    R.H. Larn and J.R. Yang: Mater. Sci. Eng., 2000, vol. A278, pp. 278–91.Google Scholar
  25. 25.
    P.H. Shipway and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1995, vol. 11, pp. 1116–28.Google Scholar
  26. 26.
    U. Ahrens, G. Besserdich, and H.J. Maier: HTM, 2000, vol. 55 (6), pp. 329–38.Google Scholar
  27. 27.
    C.L. Magee: Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 1966.Google Scholar
  28. 28.
    G.W. Greenwood and R.H. Johnson: Proc. R. Soc. London, Ser. A, 1965, vol. 283 (1394), pp. 403–22.CrossRefADSGoogle Scholar
  29. 29.
    S. Kundu, K. Hase, and H.K.D.H. Bhadeshia: Proc. R. Soc. A, 2007, vol. 463, pp. 2309–28.CrossRefADSGoogle Scholar
  30. 30.
    H.K.D.H. Bhadeshia: in Hot Workability of Steels and Light Alloys—Composites, H.J. McQueen, E.V. Konpleva, and N.D. Ryan, eds., Canadian Institute of Mining, Minearals and Petroleum, Montreal, 1996, pp. 543–56.Google Scholar
  31. 31.
    B. Wynne, B. Hutchinson, and L. Ryde: Scripta Mater., 2007, vol. 57, pp. 473–76.CrossRefGoogle Scholar
  32. 32.
    F. Frerichs, T. Lübben, F. Hoffmann, and H.-W. Zoch: Steel Res. Int., 2007, vol. 78, (7), pp. 560–65.Google Scholar
  33. 33.
    M. Dalgic and G. Löwisch: Mat.-wiss. Werkstofftech., 2006, vol. 37 (1), pp. 122–27.CrossRefGoogle Scholar
  34. 34.
    C. Bröcker, K. Steinhoff, and A. Matzenmiller: Comp. Meth. Mater. Sci., 2008, vol. 8, pp. 144–53.Google Scholar
  35. 35.
    T.A. Kop, J. Sietsma, and S. van der Zwaag: Mater. Sci. Eng., 2002 vol. A323, pp. 403–08.Google Scholar
  36. 36.
    S.C. Baik, S.-H. Park, O. Kwon, D.-I. Kim, and K.H. Oh: ISIJ Int., 2006, vol. 46 (4), pp. 599 and 605.Google Scholar
  37. 37.
    A. Matuzaki and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1999, vol. 15, pp. 518–22.CrossRefGoogle Scholar
  38. 38.
    M. Umemoto, K. Horiuchi, and I. Tamuara: Trans. ISIJ Int., 1982, vol. 22, pp. 854–61.Google Scholar
  39. 39.
    J. Wang, P.J. van der Wolk, and S. vand der Zwaag: ISIJ Int., 1999, vol. 39 (10), pp. 1038–46.CrossRefGoogle Scholar
  40. 40.
    H. Bungardt, H. Preisendanz, and H. Brandis: Ber. des Vereins deutscher Eisenhüttenleute No. 1267, Düsseldorf.Google Scholar
  41. 41.
    C.M. Wayman and H.K.D.H. Bhadeshia: in Physical Metallurgy, R.W. Cahn and P. Hassen, eds., Elsevier, Holland, 1996, pp. 1507–54.CrossRefGoogle Scholar
  42. 42.
    H.K.D.H. Bhadeshia: Bainite in Steels, 2nd ed., Institute of Materials, London, 2001.Google Scholar
  43. 43.
    H.-G. Lambers, S. Tschumak, and H.J. Maier: Proc. 2nd Int. Conf. on Distortion Engineering-IDE 2008, in press.Google Scholar
  44. 44.
    P.S. Bate and W.B. Hutchinson: J. Appl. Cryst., 2008, vol. 41, pp. 210–13.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2009

Authors and Affiliations

  • H.-G. Lambers
    • 1
  • S. Tschumak
    • 1
  • H. J. Maier
    • 1
  • D. Canadinc
    • 2
  1. 1.Lehrstuhl für Werkstoffkunde (Materials Science)University of PaderbornPaderbornGermany
  2. 2.Department of Mechanical EngineeringKoc UniversityIstanbulTurkey

Personalised recommendations