Metallurgical and Materials Transactions A

, Volume 40, Issue 5, pp 1175–1189 | Cite as

Dynamic Recrystallization of Austenite in Ni-30 Pct Fe Model Alloy: Microstructure and Texture Evolution

Article

Abstract

The microstructure and crystallographic texture development in an austenitic Ni-30 pct Fe model alloy was investigated within the dynamic recrystallization (DRX) regime using hot torsion testing. The prominent DRX nucleation mechanism was strain-induced grain boundary migration accompanied by the formation of large-angle sub-boundaries and annealing twins. The increase in DRX volume fraction occurred through the formation of multiple twinning chains. With increasing strain, the pre-existing Σ3 twin boundaries became gradually converted to general boundaries capable of acting as potent DRX nucleation sites. The texture characteristics of deformed grains resulted from the preferred consumption of high Taylor factor components by new recrystallized grains. Similarly, the texture of DRX grains was dominated by low Taylor factor components as a result of their lower consumption rate during the DRX process. The substructure of deformed grains was characterized by “organized,” banded subgrain arrangements, while that of the DRX grains displayed “random,” more equiaxed subgrain/cell configurations.

Notes

Acknowledgments

This research was supported by grants through the Australian Research Council including an ARC Federation Fellowship (PDH). The authors also thank Dr. Y. Adachi for provision of the facilities to perform a portion of the current EBSD examination.

References

  1. 1.
    T. Sakai and J.J. Jonas: Acta Metall., 1984, vol. 32, pp. 189–209.CrossRefGoogle Scholar
  2. 2.
    A. Belyakov, H. Miura, and T. Sakai: Mater. Sci. Eng. A, 1998, vol. 255, pp. 139–47.CrossRefGoogle Scholar
  3. 3.
    A.M. Wusatowska-Sarnek, H. Miura, and T. Sakai: Mater. Sci. Eng. A, 2002, vol. 323, pp. 177–86.CrossRefGoogle Scholar
  4. 4.
    F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon, Oxford, United Kingdom, 1996.Google Scholar
  5. 5.
    X. Wang, E. Brunger, and G. Gottstein: Mater. Sci. Eng. A, 2000, vol. 290, pp. 180–85.CrossRefGoogle Scholar
  6. 6.
    E. Brunger, X. Wang, and G. Gottstein: Scripta Mater., 1998, vol. 38, pp. 1843–49.CrossRefGoogle Scholar
  7. 7.
    X. Huang and G. Winther: Philos. Mag., 2007, vol. 87, pp. 5189–5214.ADSCrossRefGoogle Scholar
  8. 8.
    Q.Z. Chen, A.H.W. Ngan, and B.J. Duggan: Proc. R. Soc. London A, 2003, vol. 459, pp. 1661–85.ADSCrossRefGoogle Scholar
  9. 9.
    Q.Z. Chen and B.J. Duggan: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3423–30.CrossRefGoogle Scholar
  10. 10.
    G. Winther and X. Huang: Philos. Mag., 2007, vol. 87, pp. 5215–35.ADSCrossRefGoogle Scholar
  11. 11.
    B.L. Li, A. Godfrey, Q.C. Meng, Q. Liu, and N. Hansen: Acta Mater., 2004, vol. 52, pp. 1069–81.CrossRefGoogle Scholar
  12. 12.
    P. Cizek, J.A. Whiteman, W.M. Rainforth, and J.H. Beynon: J. Microsc., 2004, vol. 213, pp. 285–95.PubMedMathSciNetCrossRefGoogle Scholar
  13. 13.
    P.J. Hurley and F.J. Humphreys: Acta Mater., 2003, vol. 51, pp. 1087–1102.CrossRefGoogle Scholar
  14. 14.
    W. Charnock and J. Nutting: Met. Sci. J., 1967, vol. 1, pp. 123–27.CrossRefGoogle Scholar
  15. 15.
    P.J. Hurley, B.C. Muddle, and P.D. Hodgson: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2985–93.CrossRefGoogle Scholar
  16. 16.
    D.W. Suh, S. Torizuka, A. Ohmori, T. Inoue, and K. Nagai: ISIJ Int., 2002, vol. 42, pp. 432–39.CrossRefGoogle Scholar
  17. 17.
    H. Beladi, P.D. Hodgson, and M.R. Barnett: ISIJ Int., 2005, vol. 45, pp. 1893–96.CrossRefGoogle Scholar
  18. 18.
    Y. Adachi, M. Wakita, H. Beladi, and P.D. Hodgson: Acta Mater., 2007, vol. 55, pp. 4925–34.CrossRefGoogle Scholar
  19. 19.
    P.D. Hodgson, D.C. Collinson, and B. Perrett: Proc. Int. Symp. on Physical Simulation, NRIM, Tsukuba, Japan, 1997, pp. 219–39.Google Scholar
  20. 20.
    D.S. Fields and A.W. Backofen: Proc. American Society of Testing Materials, 1957, vol. 75, pp. 1259–72.Google Scholar
  21. 21.
    F.J. Humphreys, P.S. Bate, and P.J. Hurley: J. Microsc., 2001, vol. 201, pp. 50–58.PubMedMathSciNetCrossRefGoogle Scholar
  22. 22.
    H.J. Bunge: Texture Analysis in Materials Science: Mathematical Methods, Butterworth and Co., London, 1982.Google Scholar
  23. 23.
    V. Randle and O. Engler: Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, Gordon and Breach Science Publishers, Amsterdam, 2000.Google Scholar
  24. 24.
    E.I. Poliak and J.J. Jonas: ISIJ Int., 2003, vol. 43, pp. 684–91.CrossRefGoogle Scholar
  25. 25.
    D.W. Suh, T. Inoue, S. Torizuka, A. Ohmori, and K. Nagai: ISIJ Int., 2002, vol. 42, pp. 1026–32.CrossRefGoogle Scholar
  26. 26.
    P.J. Sah, C.J. Richardson, and C.M. Sellars: Met. Sci., 1974, vol. 8, pp. 325–31.Google Scholar
  27. 27.
    P. Cizek, B.P. Wynne, and W.M. Rainforth: J. Microsc., 2006, vol. 222, pp. 85–96.PubMedMathSciNetCrossRefGoogle Scholar
  28. 28.
    L.S. Toth, P. Gilormini, and J.J. Jonas: Acta Metall., 1988, vol. 36, pp. 3077–91.CrossRefGoogle Scholar
  29. 29.
    S. Li, I.J. Beyerlein, and A.M. Bourke: Mater. Sci. Eng. A, 2005, vol. 394, pp. 66–77.CrossRefGoogle Scholar
  30. 30.
    B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf: Acta Metall. Mater., 1992, vol. 40, pp. 205–19.ADSCrossRefGoogle Scholar
  31. 31.
    H. Miura, S. Andiarwanto, K. Sato, and T. Sakai: Mater. Trans., 2002, vol. 43, pp. 494–500.CrossRefGoogle Scholar
  32. 32.
    H. Miura, M. Ozama, R. Mogawa, and T. Sakai: Scripta Mater., 2003, vol. 48, pp. 1501–05.CrossRefGoogle Scholar
  33. 33.
    L. Blaz, T. Sakai, and J.J. Jonas: Met. Sci., 1983, vol. 17, pp. 609–16.Google Scholar
  34. 34.
    C.S. Pande, M.A. Imam, and B.B. Rath: Metall. Trans. A, 1990, vol. 21A, pp. 2891–96.ADSGoogle Scholar
  35. 35.
    S. Mahajan, C.S. Pande, M.A. Imam, and B.B. Rath: Acta Mater., 1997, vol. 45, pp. 2633–38.CrossRefGoogle Scholar
  36. 36.
    D. Jorge-Badiola, A. Iza-Mendia, and I. Gutierrez: Mater. Sci. Eng. A, 2005, vol. 394, pp. 445–54.CrossRefGoogle Scholar
  37. 37.
    H.K.D.H. Bhadeshia: Worked Examples in the Geometry of Crystals, The Institute of Metals, London, 2001, pp. 41–43.Google Scholar
  38. 38.
    S. Poulat, B. Decamps, and L. Priester: Philos. Mag. A, 1999, vol. 79, pp. 2655–80.ADSCrossRefGoogle Scholar
  39. 39.
    S. Poulat, B. Decamps, and L. Priester: Philos. Mag. A, 1998, vol. 77, pp. 1381–97.CrossRefGoogle Scholar
  40. 40.
    L. Priester: Mater. Sci. Eng. A, 2001, vols. 309–310, pp. 430–39.Google Scholar
  41. 41.
    J.J. Jonas and L.S. Toth: Scripta Metall. Mater., 1992, vol. 27, pp. 1575–80.CrossRefGoogle Scholar
  42. 42.
    B.P. Kashyap and K. Tangri: Acta Mater., 1997, vol. 45, pp. 2383–95.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2009

Authors and Affiliations

  • Hossein Beladi
    • 1
  • Pavel Cizek
    • 1
  • Peter D. Hodgson
    • 1
  1. 1.Centre for Material and Fibre InnovationDeakin UniversityGeelongAustralia

Personalised recommendations