Advertisement

Metallurgical and Materials Transactions A

, Volume 41, Issue 4, pp 888–899 | Cite as

Thermodynamics-Based Computational Design of Al-Mg-Sc-Zr Alloys

  • G.N. Haidemenopoulos
  • A.I. Katsamas
  • H. Kamoutsi
Article

Abstract

Alloying additions of Sc and Zr raise the yield strength of Al-Mg alloys significantly. We have studied the effects of Sc and Zr on the grain refinement and recrystallization resistance of Al-Mg alloys with the aid of computational alloy thermodynamics. The grain refinement potential has been assessed by Scheil–Gulliver simulations of solidification paths, while the recrystallization resistance (Zener drag) has been assessed by calculation of the precipitation driving forces of the Al3Sc and Al3Zr intermetallics. Microstructural performance indices have been derived, used to rank several alloy composition variants, and finally select the variant with the best combination of grain refinement and recrystallization resistance. The method can be used, with certain limitations, for a thermodynamics-based design of Al-Mg and other alloy compositions.

Keywords

Al3Zr Al3Sc Heterogeneous Nucleation Site Al3Zr Particle Alloy Variant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been partially supported by the Greek Secretariat of Research and Technology (Athens, Greece) under Grant No. 05PAV81. The authors thank Drs. D. Skarmoutsos of ELKEME (Athens, Greece) and D. Spathis of ELVAL (Oinofyta, Greece) for helpful suggestions.

References

  1. 1.
    V.I. Elagin, V.V. Zakharov, and T.D. Rostova: Metalloved. Termich. Obrab. Metallov., 1992, vol. 1, pp. 24–28.Google Scholar
  2. 2.
    Z. Yin, Q. Pan, Y. Zhang, and F. Jiang: Mater. Sci. Eng., A, 2000, vol. 280, pp.151–55.CrossRefGoogle Scholar
  3. 3.
    Y.A. Filatov, V.I. Yelagin, and V.V. Zakharov: Mater. Sci. Eng., A, 2000, vol. 280, pp. 97–101.CrossRefGoogle Scholar
  4. 4.
    K.L. Kendig and D.B. Miracle: Acta Mater., 2002, vol. 50, pp. 4165–4417.CrossRefGoogle Scholar
  5. 5.
    J. Royset and N. Ryum: Int. Mater. Rev., 2005, vol. 50 (1), pp. 19–44.CrossRefGoogle Scholar
  6. 6.
    V. Ocenasek and M. Slamova: Mater. Charact., 2001, vol. 47, pp.157–62.CrossRefGoogle Scholar
  7. 7.
    F. Zeng, C. Xia, and Y. Gu: J. Alloys Compd., 2004, vol. 363, pp. 175–81.CrossRefGoogle Scholar
  8. 8.
    B. Forbord, H. Hallem, and K. Marthinsen: Mater. Sci. Eng., A, 2004, vols. 387–389, pp. 936–39.Google Scholar
  9. 9.
    Y.W. Riddle and T.H. Sanders: Mater. Sci. Forum, 2000, vols. 331–337, pp. 939–44.CrossRefGoogle Scholar
  10. 10.
    J.S. Vetrano, S.M. Bruemmer, L.M. Pawloski, and I.M. Robertson: Mater. Sci. Eng., A, 1997, vol. 238, pp. 101–07.CrossRefGoogle Scholar
  11. 11.
    V.I. Elagin, V.V. Zakharov, and T.D. Rostova: Met. Sci. Heat Treat., 1992, vol. 1, pp. 37–45.CrossRefGoogle Scholar
  12. 12.
    V.G. Davydov, T.D. Rostova, V.V. Zakharov, Y.A. Filatov, and V.I. Yelagin: Mater. Sci. Eng., A, 2000, vol. 280, pp. 30–36.CrossRefGoogle Scholar
  13. 13.
    Y.W. Riddle, H. Hallem, and N. Ryum: Mater. Sci. Forum, 2002, vols. 396–402, pp. 563–68.CrossRefGoogle Scholar
  14. 14.
    A. Pisch, J. Groebner, and R. Schmid-Fetzer: Mater. Sci. Eng., A, 2000, vol. 289A, pp. 123–29.Google Scholar
  15. 15.
    A.F. Norman, P.B. Pragnell, and R.S. McEwen: Acta Mater., 1998, vol. 46, pp. 5715–32.CrossRefGoogle Scholar
  16. 16.
    C. Zener: Trans. Am. Inst. Min. Metall. Eng., 1946, vol. 167, pp. 551–95.Google Scholar
  17. 17.
    H.I. Aaronson and K.C. Russell: in Solid → Solid Phase Transformations, H.I. Aaronson, D.E. Laughlin, and C.M. Wayman, eds., TMS-AIME, Warrendale, PA, 1982, pp. 371–98.Google Scholar
  18. 18.
    B. Sundman, B. Jansson, and J.-O. Anderson: CALPHAD, 1985, vol. 9, pp. 153–90.CrossRefGoogle Scholar
  19. 19.
    N. Saunders and A.P. Miodownik: CALPHAD: Calculation of Phase Diagrams, Pergamon, Oxford, UK, 1998, pp. 91–110.Google Scholar
  20. 20.
    G. Effenberg: COST 507: Definition of Thermochemical and Thermophysical Properties to Provide a Database for the Development of New Light Alloys. European Cooperation in the Field of Scientific and Technical Research, European Commission. Vol 1. Proceedings of the Final Workshop of COST 507, Vaals, the Netherlands, 1997. Vol 2. Thermochemical Database for Light Metal Alloys (I. Ansara, A.T. Dinsdale, and M.H. Rand, eds.). Vol 3. Critical Evaluation of Ternary Systems.Google Scholar
  21. 21.
    K. Janssens, D. Raabe, E. Kozeschnik, M.A. Miodownik, and B. Nestler: Comput. Mater. Eng., Elsevier Academic Press, Burlington, MA, 2007, pp. 28–30.Google Scholar
  22. 22.
    G. Cacciamani, P. Riani, G. Borzone, N. Parodi, A. Saccone, R. Ferro, A. Pisch, and R. Schmid-Fetzer: Intermetallics, 1999, vol. 7, pp. 101–08.CrossRefGoogle Scholar
  23. 23.
    O. Redlich and A.T. Kister: Ind. Eng. Chem., 1948, vol. 40 (2), pp. 345–48.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2010

Authors and Affiliations

  • G.N. Haidemenopoulos
    • 1
  • A.I. Katsamas
    • 1
    • 2
  • H. Kamoutsi
    • 1
  1. 1.Laboratory of Materials, Department of Mechanical EngineeringUniversity of ThessalyVolosGreece
  2. 2.Directorate of Environment and Land PlanningRegion of ThessalyLarissaGreece

Personalised recommendations