Advertisement

Metallurgical and Materials Transactions A

, Volume 41, Issue 4, pp 1033–1045 | Cite as

Effect of Hot-Isostatic-Pressing Parameters on the Microstructure and Properties of Powder Ti-6Al-4V Hot-Isostatically-Pressed Samples

  • K. Zhang
  • J. Mei
  • N. Wain
  • X. Wu
Article

Abstract

Ti-6Al-4V powders have been hot-isostatically-pressed (“HIPped”) using a range of hot-isostatic-pressing (“HIPping”) conditions, and the effects on microstructure and mechanical properties have been assessed. The properties were measured on test samples machined from HIPped powder billets and on samples that contained the as-HIPped surface. The fatigue limit of samples that contained the as-HIPped surface was improved by using a new HIPping procedure. The machined samples that had been HIPped at 1203 K (930 °C) exhibited a better balance of properties than those HIPped at 1153 K (880 °C) or 1293 K (1020 °C). The fine microstructure, formed from the martensitic structure of the atomized powder, coarsens with the increase of temperature or time during HIPping. These changes have been correlated with the corresponding changes in properties and with the fracture surfaces. The significance of these observations, especially the fatigue properties of samples that contain the as-HIPped surface, is discussed in terms of the properties of net-shape HIPped components.

Keywords

Fatigue Fatigue Life Powder Particle Fatigue Limit Fatigue Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge the financial support of this work by ORS and Rolls-Royce plc. Tremendous thanks are due to Professor M.H. Loretto for many stimulating discussions and thoughtful suggestions.

References

  1. 1.
    W.B. Li, M.F. Ashby, and K.E. Easterling: Acta Metall., 1987, vol. 35 (12), pp. 2831–42.CrossRefGoogle Scholar
  2. 2.
    D. Seliverstov, V. Samarov, V. Goloveshkin, S. Alexandrov, and P. Elkstrom: Proc. Conf. on “Hot Isostatic Pressing,” L. Delaey and H. Tas, eds., Elsevier Science BV., Amsterdam, 1994, pp. 555–60.Google Scholar
  3. 3.
    C. Dellis, P.L. Gallo, R. Baccino, and F. Morret: Proc. Int. Conf. on “Hot Isostatic Pressing,” ASM INTERNATIONAL, Materials Park, OH, 1996, pp. 75–79.Google Scholar
  4. 4.
    G. Raisson: Hot Isostatic Pressing Int. Conf. 1999, International Academic Publishing, Beijing, 1999, pp. 390–93.Google Scholar
  5. 5.
    R. Baccino, F. Morret, F. Fellerin, D. Guichard, and G. Raisson: Mater. Design, 2000, vol. 21, pp. 345–50.CrossRefGoogle Scholar
  6. 6.
    E. Arzt, M.F. Ashby, and K.E. Easterling: Metall. Trans. A, 1983, vol. 14A, pp. 211–21ADSGoogle Scholar
  7. 7.
    W.X. Yuan, J. Mei, V. Samarov, D. Seliverstov, and X. Wu: J. Mater. Process. Technol., 2007, vol. 182, pp. 39–49.CrossRefGoogle Scholar
  8. 8.
    F.H. Froes and J. Hebeisen: Hot Isostatic Pressing Int. Conf. 1999, International Academic Publishing, Beijing, 1999, pp. 1–24.Google Scholar
  9. 9.
    Materials Properties Handbook: Titanium Alloys, R. Boyer, G. Welsch, and E.W. Collings, eds., ASM INTERNATIONAL, Materials Park, OH, 1994, pp. 483–84.Google Scholar
  10. 10.
    R.R. Boyer: Mater. Sci. Eng., 1996, vol. A213, pp. 103–14.Google Scholar
  11. 11.
    G. Lütjering and J.C. Willians: Engineering Materials and Processes: Titanium, Springer, Berlin, Germany, 2003.Google Scholar
  12. 12.
    I.J. Polmear: Light Alloys: Metallurgy of the Light Metals, 3rd ed., Edward Arnold, London, 1995.Google Scholar
  13. 13.
    J.C. Williams: Mater. Sci. Eng., 1999, vol. A263, pp. 107–11.Google Scholar
  14. 14.
    A. Davidson, K. Zhang, W. Yuan, J. Mei, M.R. Bache, M.H. Loretto, W. Voice, and X. Wu: Mater. Sci. Technol., 2006, vol. 22 (5), pp. 553–60.CrossRefGoogle Scholar
  15. 15.
    British Standard, “Fracture Mechanics Toughness Tests—Part 1: Method for Determination of KIc, Critical CTOD, and Critical J Values of Metallic Materials,” BSI BS7448-1, 1991.Google Scholar
  16. 16.
    D.P. DeLo and H.R. Piehler: Acta Mater., 1999, vol. 47 (9), pp. 2841–52.CrossRefGoogle Scholar
  17. 17.
    D.P. DeLo, R.E. Dutton, S.L. Semiatin, and H.R. Piehler: Acta Mater., 1999, vol. 47 (11), pp. 3159–67.CrossRefGoogle Scholar
  18. 18.
    J.H. Kim, S.L. Semiatin, and C.S. Lee: Acta Mater., 2003, vol. 51, pp. 5613–26.CrossRefGoogle Scholar
  19. 19.
    S.L. Semiatin and T.R. Bieler: Acta Mater., 2001, vol. 49, pp. 3565–73.CrossRefGoogle Scholar
  20. 20.
    M.R. Bache: Int. J. Fatigue, 2003, vol. 25, pp. 1079–87.CrossRefGoogle Scholar
  21. 21.
    S. Mironov, M. Murzinova, S. Zherebtsov, G.A. Salishchev, and S.L. Semiatin: Acta Mater., 2009, vol. 57, pp. 2470–81.CrossRefGoogle Scholar
  22. 22.
    M.R. Bache: Int. J. Fatigue, 1999, vol. 21, pp. 105–11.CrossRefGoogle Scholar
  23. 23.
    C. Kelto: in Powder Metallurgy of Titanium Alloys, F. Froes and J. Smugeresky, eds., AIME, Warrendale, PA, 1980, pp. 5–9.Google Scholar
  24. 24.
    D. Novovic: Ph.D. Thesis, The University of Birmingham, Birmingham, United Kingdom, 2004.Google Scholar
  25. 25.
    C. Arvieu, J.P. Manaud, and J.M. Quenisset: J. Alloys Compd., 2003, vol. 368, pp. 116–22.CrossRefGoogle Scholar
  26. 26.
    X. Wu: Ph.D. Thesis, The University of Birmingham, Birmingham, United Kingdom, 1996.Google Scholar
  27. 27.
    Materials Properties Handbook, Titanium Alloys, R. Boyer, G. Welsch, and E.W. Collings, eds., ASM INTERNATIONAL, Materials Park, OH, 1994, p. 64.Google Scholar
  28. 28.
    J. Mei: University of Birmingham (IRC), Birmingham, United Kingdom, unpublished research, 2007.Google Scholar
  29. 29.
    D.B. Lanning, T. Nicholas, and G.K. Haritos: Mech. Mater., 2002, vol. 34, pp. 127–34.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2010

Authors and Affiliations

  1. 1.IRC in MaterialsThe University of BirminghamEdgbastonUnited Kingdom
  2. 2.Intertek DerbyELT14 Rolls RoyceDerbyUnited Kingdom

Personalised recommendations