Metallurgical and Materials Transactions A

, Volume 41, Issue 3, pp 641–650 | Cite as

Microstructure Size Control through Cooling Rate in Thermoelectric PbTe-Sb2Te3 Composites

  • Teruyuki IkedaEmail author
  • Vilupanur A. Ravi
  • G. Jeffrey Snyder


Microstructures of alloys with three compositions in the pseudobinary PbTe-Sb2Te3 system cast in copper molds using the injection molding technique were examined by scanning electron microscopy (SEM), energy-dispersive spectrometry, and X-ray diffraction (XRD). The microstructural length scales such as interlamellar spacing (ILS) and secondary dendrite arm spacing vary over two orders of magnitude, e.g., from 0.2 to 20 μm for SDAS in the hypereutectic alloy, depending on injection pressure, distance from surface, or thickness. The decrease in the microstructural length scale with the decrease in distance from the surface, thickness, and increase in injection pressure is attributed to an increase in the cooling rates estimated using the heat-transfer theory in solids. The difference in the injection pressures is represented as the difference in the heat-transfer coefficients.


Cool Rate Injection Pressure PbTe Lattice Thermal Conductivity Sb2Te3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partly funded by the National Aeronautics and Space Administration (NASA) through the Jet Propulsion Laboratory (Pasadena, CA) and the Precursory Research for Embryonic Science and Technology (PRESTO) program of the Japan Science and Technology Agency (Tokyo).


  1. 1.
    L.E. Bell: Science, 2008, vol. 321, pp. 1457–61.CrossRefPubMedADSGoogle Scholar
  2. 2.
    C.B. Vining: Nat. Mater., 2009, vol. 8, pp. 83–85.CrossRefPubMedADSGoogle Scholar
  3. 3.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn: Nature, 2001, vol. 413, pp. 597–602.CrossRefPubMedADSGoogle Scholar
  4. 4.
    T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge: Science, 2002, vol. 297, pp. 2229–32.CrossRefPubMedADSGoogle Scholar
  5. 5.
    G. Chen: 9th Intersoc. Conf. on Thermal and Thermomechanical Phenomena In Electronic Systems, IEEE Cat. No. 04CH37543, 2004, p. 8.Google Scholar
  6. 6.
    K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis: Science, 2004, vol. 303, pp. 818–21.CrossRefPubMedADSGoogle Scholar
  7. 7.
    D.L. Medlin and G.J. Snyder: Curr. Opin. Coll. Int. Sci., 2009, vol. 14 (4), pp. 226–35.Google Scholar
  8. 8.
    T. Ikeda, S.M. Haile, V.A. Ravi, H. Azizgolshani, F. Gascoin, and G.J. Snyder: Acta Mater., 2007, vol. 55, pp. 1227–39.CrossRefGoogle Scholar
  9. 9.
    T. Ikeda, L.A. Collins, V.A. Ravi, F.S. Gascoin, S.M. Haile, and G.J. Snyder: Chem. Mater., 2007, vol. 19, pp. 763–67.CrossRefGoogle Scholar
  10. 10.
    T. Ikeda, V.A. Ravi, L.A. Collins, S.M. Haile, and G.J. Snyder: J. Electron. Mater., 2007, vol. 37, pp. 716–20.CrossRefADSGoogle Scholar
  11. 11.
    T. Ikeda, V.A. Ravi, and G.J. Snyder: Acta Mater., 2009, vol. 57, pp. 666–72.CrossRefGoogle Scholar
  12. 12.
    T. Ikeda, E.S. Toberer, V.A. Ravi, S.M. Haile, and G.J. Snyder: 26th Int. Conf. on Thermoelectrics, 2007.Google Scholar
  13. 13.
    N.K. Abrikosov, E.I. Elagina, and M.A. Popova: Inorg. Mater., 1965, vol. 1, pp. 1944–46.Google Scholar
  14. 14.
    T. Ikeda, V.A. Ravi, and G.J. Snyder: unpublished research.Google Scholar
  15. 15.
    P.E.J. Flewitt and R.K. Wild: Physical Methods for Materials Characterization, Institute of Physics Publishing, Bristol, United Kingdom, 1994, p. 283.Google Scholar
  16. 16.
    L.E. Shelimova, O.G. Karpinskii, T.E. Svechnikova, E.S. Avilov, M.A. Kretova, and V.S. Zemskov: Inorg. Mater., 2004, vol. 40, pp. 1264–70.CrossRefGoogle Scholar
  17. 17.
    H.S. Carslaw, and J.C. Jaeger: Conduction of Heat in Solids, Clarendon, Oxford, United Kingdom, 1959, p. 122.Google Scholar
  18. 18.
    D.R. Poirier and E.J. Poirier: Heat Transfer Fundamentals, 1992, TMS, Warrendale, PA, p. 40.Google Scholar
  19. 19.
    E. Niiyama: Chuuzou Dennetsu Kougaku, Agne Gijutu Center, 2001, p. 210.Google Scholar
  20. 20.
    D. Bouchard and J.S. Kirkaldy: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 651–63.CrossRefGoogle Scholar
  21. 21.
    B. Chalmers: Principle of Solidification, 1964, Wiley, New York, NY.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2009

Authors and Affiliations

  • Teruyuki Ikeda
    • 1
    • 2
    Email author
  • Vilupanur A. Ravi
    • 3
  • G. Jeffrey Snyder
    • 2
  1. 1.PRESTOJapan Science and Technology AgencySaitamaJapan
  2. 2.Materials Science DepartmentCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Chemical and Materials Engineering DepartmentCalifornia State Polytechnic UniversityPomonaUSA

Personalised recommendations