Metallurgical and Materials Transactions A

, Volume 41, Issue 3, pp 744–750 | Cite as

Macroregion Size Measurements in Bimodal Titanium Forgings Using Two-Dimensional Autocorrelation Method

  • Lotfi Toubal
  • Philippe Bocher
  • André Moreau
  • Daniel Lévesque


Etching patterns displayed on the surfaces of near-alpha titanium forgings (alloy IMI834) were quantified in terms of sizes and orientations using a two-dimensional (2-D) autocorrelation method. These patterns, which can be associated with local variations of microstructure and further related to regions of specific crystallographic orientations, are known to play a significant role in fatigue and dwell fatigue life predictions. It is then necessary to quantify their dimensions in a manufactured part in order to build a better statistical approach for life prediction in titanium forgings. These distributions of macroregion size and shape were examined on forging cross sections. A data analysis methodology based on a 2-D autocorrelation was used to process sample image data and quantify the macroregion characteristics. The results are more precise than those obtained using a mean linear intercept (MLI) method and additional useful information can be gathered.


Autocorrelation Gray Level ASTM E112 Standard Dwell Fatigue Alloy IMI834 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    K. Le Biavant, S. Pommier, and C. Prioul: Fatigue Fract. Eng. M, 2002, vol. 25, pp. 527–47.CrossRefGoogle Scholar
  2. 2.
    L. Toubal, P. Bocher, and A Moreau: Int. J. Fatigue, 2009, vol. 31 (3), pp. 601–05.CrossRefGoogle Scholar
  3. 3.
    A.P. Woodfield, M.D. Gorman, J.A. Sutliff, and R.R. Corderman: Proc. 8th World Conf. on Titanium, Birmingham, United Kingdom, Oct. 22–26, 1995, pp. 1116–23.Google Scholar
  4. 4.
    P.D. Panetta, R.B. Thompson, and F.J. Margetan: in Review of Progress in Quantitative Nondestructive Evaluation, D.O. Thompson and D.E. Chimenti, eds., Plenum Press, New York, NY, 1998, vol. 17, pp. 89–96.Google Scholar
  5. 5.
    F. Bridier, P. Villechaise, and J. Mendez: Acta Mater., 2005, vol. 53 (13), pp. 555–67.CrossRefGoogle Scholar
  6. 6.
    L. Germain, N. Gey, M. Humbert, P. Bocher, and M. Jahazi: Acta Mater., 2005, vol. 53 (13), pp. 3535–43.CrossRefGoogle Scholar
  7. 7.
    M. Humbert, L. Germain, N. Gey, P. Bocher, and M. Jahazi: Mater. Sci. Eng. A-Struct., 2006, vol. 430 (1–2), pp. 157–64.CrossRefGoogle Scholar
  8. 8.
    M.R. Bache: Int. J. Fatigue, 2003, vol. 25, pp. 1079–87.CrossRefGoogle Scholar
  9. 9.
    L. Germain: Thèse de Doctotat, Université de Metz, Metz, France, 2005.Google Scholar
  10. 10.
    L. Germain, N. Gey, M. Humbert, P. Vo, M. Jahazi, and P. Bocher: Acta Mater., 2008, vol. 56 (16), pp. 4298–4308.CrossRefGoogle Scholar
  11. 11.
    Standard Test Method for Macroetching Metals and Alloys, ASTM E340-00, ASTM, Philadelphia, PA, 2006.Google Scholar
  12. 12.
    Standard Test Methods for Determining Average Grain Size, ASTM E112-96, ASTM, Philadelphia, PA, 2006.Google Scholar
  13. 13.
    D.J. Willis and S.H. Lake: Scripta Metall. Mater., 1987, vol. 21, pp. 1733–36.Google Scholar
  14. 14.
    H. Abrams: Metallography, 1971, vol. 4, pp. 59–78.CrossRefGoogle Scholar
  15. 15.
    Y. Takayama, N. Furushiro, T. Tozawa, H. Kato, and S. Hori: Metall. Trans. A, 1991, vol. 32A, pp. 214–21.Google Scholar
  16. 16.
    K.J. Kurzydlowski and J.J. Bucki: Scripta Metall. Mater., 1992, vol. 27, pp. 117–26.CrossRefGoogle Scholar
  17. 17.
    G.F. Vander Voort: Scripta Metall. Mater., 1992, vol. 26, pp. 1785–90.CrossRefGoogle Scholar
  18. 18.
    D.J. Willis and S.H. Lake: Scripta Metall. Mater., 1992, vol. 26, pp. 1791–94.CrossRefGoogle Scholar
  19. 19.
    L. Ciupinski, B. Ralph, and J. Kurzydlowski: Mater. Charact., 1997, vol. 38, pp. 177–85.CrossRefGoogle Scholar
  20. 20.
    L.M. Karlsson and A.M. Gokhale: J. Microsc., 1997, vol. 86 (2), pp. 143–52.CrossRefGoogle Scholar
  21. 21.
    R.P. Heilbronner: Tectonophysics, 1992, vol. 212 (3–4), pp. 351–70.CrossRefADSGoogle Scholar
  22. 22.
    H.P. William, A.T. Saul, T.V. William, and P.F. Brian: Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, United Kingdom, 1986, pp. 381–416.Google Scholar
  23. 23.
    H. Yao, T. Jifeng, and W. Zhonggunang: Mater. Sci. Eng. A, 1991, vol. 148. pp. 45–65.CrossRefGoogle Scholar
  24. 24.
    P. Frykman and A.T. Rogon: Comput. Geosci., 1993, vol. 19 (7), pp. 887–930.CrossRefADSGoogle Scholar
  25. 25.
    R.P. Heilbronner: Comput. Geosci., 2002, vol. 28, pp. 447–55.CrossRefADSGoogle Scholar
  26. 26.
    M. Humbert, A. Moreau, E. Uta, N. Gey, P. Bocher, and C. Bescond: Acta Mater., 2009, vol. 57 (3), pp. 708–14.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2010

Authors and Affiliations

  • Lotfi Toubal
    • 1
  • Philippe Bocher
    • 2
  • André Moreau
    • 3
  • Daniel Lévesque
    • 3
  1. 1.Department of Mechanical EngineeringUniversité du Québec à Trois-RivièresTrois-RivièresCanada
  2. 2.Department of Mechanical EngineeringÉcole de Technologie SupérieureMontréalCanada
  3. 3.Industrial Materials InstituteNational Research Council of CanadaBouchervilleCanada

Personalised recommendations