Influence of Al on the Microstructural Evolution and Mechanical Behavior of Low-Carbon, Manganese Transformation-Induced-Plasticity Steel

  • Dong-Woo Suh
  • Seong-Jun Park
  • Tae-Ho Lee
  • Chang-Seok Oh
  • Sung-Joon Kim


Microstructural design with an Al addition is suggested for low-carbon, manganese transformation-induced-plasticity (Mn TRIP) steel for application in the continuous-annealing process. With an Al content of 1 mass pct, the competition between the recrystallization of the cold-rolled microstructure and the austenite formation cannot be avoided during intercritical annealing, and the recrystallization of the deformed matrix does not proceed effectively. The addition of 3 mass pct Al, however, allows nearly complete recrystallization of the deformed microstructure by providing a dual-phase cold-rolled structure consisting of ferrite and martensite and by suppressing excessive austenite formation at a higher annealing temperature. An optimized annealing condition results in the room-temperature stability of the intercritical austenite in Mn TRIP steel containing 3 mass pct Al, permitting persistent transformation to martensite during tensile deformation. The alloy presents an excellent strength-ductility balance combining a tensile strength of approximately 1 GPa with a total elongation over 25 pct, which is comparable to that of Mn TRIP steel subjected to batch-type annealing.


Ferrite Austenite Martensite Austempering Trip Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B.C. De Cooman: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 285–303.CrossRefGoogle Scholar
  2. 2.
    J. Bouquerel, K. Verbeken, and B.C. De Cooman: Acta Mater., 2006, vol. 54, pp. 1443–56.CrossRefGoogle Scholar
  3. 3.
    S. Zaefferer, J. Ohlert, and W. Bleck: Acta Mater., 2002, vol. 52, pp. 2765–78.CrossRefGoogle Scholar
  4. 4.
    C. Jing, D.W. Suh, C.S. Oh, Z. Wang, and S.J. Kim: Met. Mater.-Int., 2007, vol. 13, pp. 13–19.CrossRefGoogle Scholar
  5. 5.
    C.P. Scott and J. Drillet: Scripta Mater., 2007, vol. 56, pp. 489–92.CrossRefGoogle Scholar
  6. 6.
    P. J. Jacques: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 259–65.CrossRefGoogle Scholar
  7. 7.
    K. Sugimoto, M. Murata, T. Muramatsu, and Y. Mukai: ISIJ Int., 2007, vol. 47, pp. 1357–62.CrossRefGoogle Scholar
  8. 8.
    D.K. Matlock and J.G. Speer: Proc. 3rd Int. Conf. on Advanced Structural Steels, KIM, Gyeongjoo, Korea, 2006, pp. 744–81.Google Scholar
  9. 9.
    R.L. Miller: Metall. Trans., 1972, vol. 3, pp. 905–12.CrossRefGoogle Scholar
  10. 10.
    T. Furukawa, H. Huang, and O. Matsumura: Mater. Sci. Technol., 1994, vol. 10, pp. 964–69.Google Scholar
  11. 11.
    H. Huang, O. Matsumura, and T. Furukawa: Mater. Sci. Technol., 1994, vol. 10, pp. 621–26.Google Scholar
  12. 12.
    H. Takechi: JOM, 2008, vol. 60, pp. 22–26.CrossRefADSGoogle Scholar
  13. 13.
    D.W. Suh, S.J. Park, C.S. Oh, and S.J. Kim: Scripta Mater., 2007, vol. 57, pp. 1097–1100.CrossRefGoogle Scholar
  14. 14.
    Thermo-Calc Software, Version R, User’s Guide, Thermo-calc software AB, Stockholm, Sweden, 2007.Google Scholar
  15. 15.
    B.J. Lee: POSTECH, Pohang, Korea, private communication, 2008.Google Scholar
  16. 16.
    C.F. Jatczak: SAE Technical Paper Series 800426, SAE, PA, 1980, pp. 1–20.Google Scholar
  17. 17.
    B.C. Cullity: Elements of X-Ray Diffraction, Addison-Wesley, London, 1978, pp. 517–18.Google Scholar
  18. 18.
    “ASTM E8M-03 Standard Test Methods for Tension Testing of Metallic Materials,” Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, 2003, vol. 03.01, pp. 1–24.Google Scholar
  19. 19.
    S.W. Thompson and P.R. Howell: Mater. Sci. Technol., 1992, vol. 8, pp. 777–84.Google Scholar
  20. 20.
    D.W. Suh, S.J. Park, and S.J. Kim: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2015–19.CrossRefADSGoogle Scholar
  21. 21.
    F. Heidelbach, H.R. Wenk, S.R. Chen, J. Pospiech, and S.I. Wright: Mater. Sci. Eng., 1996, vol. A215, pp. 39–49.Google Scholar
  22. 22.
    F.J. Humphreys and M. Ferry: Mater. Sci. Technol., 1997, vol. 13, pp. 85–90.Google Scholar
  23. 23.
    F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier, Oxford, United Kingdom, 1995, pp. 8–9.Google Scholar
  24. 24.
    J. Wang and S.V.D. Zwaag: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1527–39.CrossRefADSGoogle Scholar
  25. 25.
    D.W. Suh, S.J. Park, C.H. Lee, and S.J. Kim: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 264–68.CrossRefADSGoogle Scholar
  26. 26.
    S. Turteltaub and A.S.J. Suiker: Int. J. Solids Struct., 2006, vol. 43, pp. 7322–36.zbMATHCrossRefGoogle Scholar
  27. 27.
    J. Mahieu, J. Maki, B.C. De Cooman, and S. Claessens: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2573–80.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2009

Authors and Affiliations

  • Dong-Woo Suh
    • 1
  • Seong-Jun Park
    • 2
  • Tae-Ho Lee
    • 2
  • Chang-Seok Oh
    • 2
  • Sung-Joon Kim
    • 2
  1. 1.Graduate Institute of Ferrous Technology (GIFT)Pohang University of Science and Technology (POSTECH)PohangKorea
  2. 2.Structural Materials DivisionKorea Institute of Materials ScienceChangwonKorea

Personalised recommendations