Microstructural Inclusion Influence on Fatigue of a Cast A356 Aluminum Alloy

  • J.B. JordonEmail author
  • M.F. Horstemeyer
  • N. Yang
  • J.F. Major
  • K.A. Gall
  • J. Fan
  • D.L. McDowell


We examine the dependence of fatigue properties on the different size scale microstructural inclusions of a cast A356 aluminum alloy in order to quantify the structure-property relations. Scanning electron microscopy (SEM) analysis was performed on fatigue specimens that included three different dendrite cell sizes (DCSs). Where past studies have focused upon DCSs or pore size effects on fatigue life, this study includes other metrics such as nearest neighbor distance (NND) of inclusions, inclusion distance to the free surface, and inclusion type (porosity or oxides). The present study is necessary to separate the effects of numerous microstructural inclusions that have a confounding effect on the fatigue life. The results clearly showed that the maximum pore size (MPS), NND of gas pores, and DCS all can influence the fatigue life. These conclusions are presumed to be typical of other cast alloys with similar second-phase constituents and inclusions. As such, the inclusion-property relations of this work were employed in a microstructure-based fatigue model operating on the crack incubation and MSC with good results.


Fatigue Fatigue Life Fatigue Crack Growth Void Volume Fraction Near Neighbor Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors recognize Richard Osborne and Don Penrod for their encouragement of this study, Gerry Shulke for producing the plates, and Westmoreland Mechanical Testing and Research for testing the specimens. This work has been sponsored by the United States Department of Energy, Sandia National Laboratories, under Contract No. DE-AC04-94AL85000, and the Center for Advanced Vehicular Systems (CAVS) at Mississippi State University.


  1. 1.
    R.I. Stephens, H.D. Berns, R.A. Chernenkoff, R.L. Indig, S.K. Koh, D.J. Lingenfelser, M.R. Mitchell, R.A. Testin, and C.C. Wigant: Low Cycle Fatigue of A356-T6 Cast Aluminum Alloy—A Round-Robin Test Program, SAE Technical Publication SP760, SAE, 1988a, vol. 881701, pp. 1–28,
  2. 2.
    R.I. Stephens, B.J. Mahoney, and R.G. Fossman: Low Cycle Fatigue of A356-T6 Cast Aluminum Alloy Wheels, SAE Technical Publication SP760, SAE, 1988b, vol. 881707, pp. 93–102,
  3. 3.
    J. Fan, D.L. McDowell, M.F. Horstemeyer, and K.A. Gall: Eng. Fract. Mech., 2001, vol. 68 (15), pp. 1687–1706.CrossRefGoogle Scholar
  4. 4.
    K. Gall, N. Yang, M.F. Horstemeyer, D.L. McDowell, and J. Fan: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 3079–88.CrossRefGoogle Scholar
  5. 5.
    K. Gall, N. Yang, M.F. Horstemeyer, D.L. McDowell, and J. Fan: Fatigue Fract. Eng. Mater. Struct., 2000, vol. 23, pp. 159–72.CrossRefGoogle Scholar
  6. 6.
    K. Gall, M.F. Horstemeyer, B.W. Degner, D.L. McDowell, and J. Fan: Int. J. Fract., 2001, vol. 198 (3), pp. 207–33.CrossRefGoogle Scholar
  7. 7.
    M.F. Horstemeyer: Scripta Mater., 1998, vol. 39 (11), pp. 1491–95.CrossRefGoogle Scholar
  8. 8.
    M.F. Horstemeyer and A.M. Gokhale: Int. J. Solids Struct., 1999, vol. 36, pp. 5029–55.zbMATHCrossRefGoogle Scholar
  9. 9.
    B. Zhang, D.R. Poirier, and W. Chen: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2659–66.CrossRefGoogle Scholar
  10. 10.
    D.A. Lados and D. Apelian: Mater. Sci. Eng. A, 2001, vol. 385, pp. 200–11.Google Scholar
  11. 11.
    D.A. Lados, D. Apelian, and J.F. Major: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2405–18.CrossRefGoogle Scholar
  12. 12.
    J.F. Major: AFS Trans., 1997, vol. 102, pp. 901–06.Google Scholar
  13. 13.
    S. Kumai, J. Hu, Y. Higo, and S. Nunomura: Acta Mater., 1996, vol. 44 (6), pp. 2249–25.CrossRefGoogle Scholar
  14. 14.
    Q.G. Wang, D. Apelian, and D.A. Lados: J. Light Met., 2001, vol. 1, pp. 85–97.CrossRefGoogle Scholar
  15. 15.
    J. Fan and S. Hao: J. Comput. Aided Mater. Des., 2004, vol. 11, pp. 139–61.CrossRefADSGoogle Scholar
  16. 16.
    J.Z. Yi, Y.X. Gao, P.D. Lee, and T.C. Lindley: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 301–11.CrossRefADSGoogle Scholar
  17. 17.
    X. Zhu, J.Z. Yi, J.W. Jones, and J.E. Allison: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1111–22.CrossRefADSGoogle Scholar
  18. 18.
    J.-Y. Buffière, S. Savelli, P.H. Jouneau, E. Maire, and R. Fougères: Mater. Sci. Eng. A, 2001, vol. 316, pp. 115–26.CrossRefGoogle Scholar
  19. 19.
    J.Z. Yi, Y.X. Gao, P.D. Lee, H.M. Flower, and T.C. Lindley: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1879–90.CrossRefADSGoogle Scholar
  20. 20.
    J.Z. Yi, P.D. Lee, T.C. Lindley, and T. Fukui: Mater. Sci. Eng. A, 2006, vol. 432, pp. 59–68.CrossRefGoogle Scholar
  21. 21.
    Q.G. Wang, D. Apelian, and D.A. Lados: J. Light Met., 2001, vol. 1, pp. 73–84.CrossRefGoogle Scholar
  22. 22.
    D.L. McDowell, K. Gall, M.F. Horstemeyer, and J. Fan: Eng. Fract. Mech., 2003, vol. 70, pp. 49–80.CrossRefGoogle Scholar
  23. 23.
    J. Fan, D.L McDowell, M.F. Horstemeyer, and K.A. Gall: Eng. Fract. Mech., 2003, vol. 70 (10), pp. 1281, 1302.Google Scholar
  24. 24.
    Y. Xue, D.L. McDowell, M.F. Horstemeyer, M. Dale, and J.B. Jordon: Eng. Fract. Mech., 2007, vol. 74, pp. 2810–23.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2009

Authors and Affiliations

  • J.B. Jordon
    • 1
    Email author
  • M.F. Horstemeyer
    • 2
  • N. Yang
    • 3
  • J.F. Major
    • 4
  • K.A. Gall
    • 5
  • J. Fan
    • 6
  • D.L. McDowell
    • 7
  1. 1.Center for Advanced Vehicular Systems (CAVS)Mississippi State UniversityMississippi StateUSA
  2. 2.Center for Advanced Vehicular Systems (CAVS) and Department of Mechanical EngineeringMississippi State UniversityMississippi StateUSA
  3. 3.Sandia National LaboratoriesLivermoreUSA
  4. 4.Arvida R&D Centre, Rio Tinto AlcanJonquiereCanada
  5. 5.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  6. 6.Department of Mechanical EngineeringAlfred UniversityAlfredUSA
  7. 7.George Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations