Metallurgical and Materials Transactions A

, Volume 41, Issue 7, pp 1706–1713 | Cite as

Amorphous Zr-Based Foams with Aligned, Elongated Pores

  • Marie E. Cox
  • Suveen N. Mathaudhu
  • K. Ted Hartwig
  • David C. Dunand
Symposium: Bulk Metallic Glasses VI


Interpenetrating phase composites are created by warm equal channel angular extrusion (ECAE) of blended powders of amorphous Zr58.5Nb2.8Cu15.6Ni12.8Al10.3 (Vit106a) and a crystalline ductile metal (Cu, Ni, or W). Subsequent dissolution of the continuous metallic phase results in amorphous Vit106a foams with ~40 pct aligned, elongated pores. The extent of Vit106a powder densification in the composites improves with the strength of the crystalline metallic powder, from low for Cu to high for W, with a concomitant improvement in foam compressive strength, ductility, and energy absorption.


Foam Shear Band Spark Plasma Sinter BaF2 Bulk Metallic Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One of the authors (MEC) was supported by a National Science Foundation Graduate Research Fellowship. The authors acknowledge the experimental help of Larry Jones, Materials Preparation Center, Ames Laboratory (United States Department of Energy), and Robert Barber of Texas A&M University.


  1. 1.
    C.A. Schuh, T.C. Hufnagel, and U. Ramamurty: Acta Mater., 2007, vol. 55, pp. 4067–4109.CrossRefGoogle Scholar
  2. 2.
    A.L. Greer: Mater. Today, 2009, vol. 12, pp. 14–22.CrossRefADSGoogle Scholar
  3. 3.
    E.S. Park and D.H. Kim: Metall. Mater. Int., 2005, vol. 11, pp. 19–28.CrossRefGoogle Scholar
  4. 4.
    D.C. Hofmann, J. Suh, A. Wiest, G. Duan, M. Lind, M.D. Demetriou, and W.L. Johnson: Nature, 2008, vol. 451, pp. 1085–89.CrossRefPubMedADSGoogle Scholar
  5. 5.
    A.H. Brothers and D.C. Dunand: Adv. Mater., 2005, vol. 17, pp. 484–46.CrossRefGoogle Scholar
  6. 6.
    A.H. Brothers and D.C. Dunand: Acta Mater., 2005, vol. 53, pp. 4427–40.CrossRefGoogle Scholar
  7. 7.
    A. Brothers, D. Prine, and D.C. Dunand: Intermetallics, 2006, vol. 14, pp. 857–65.CrossRefGoogle Scholar
  8. 8.
    A.H. Brothers and D.C. Dunand: Scripta Mater., 2006, vol. 54, pp. 513–20.CrossRefGoogle Scholar
  9. 9.
    A.H. Brothers and D.C. Dunand: MRS Bull., 2007, vol. 32, pp. 639–43.Google Scholar
  10. 10.
    J. Schroers, C. Veazey, and W.L. Johnson: Appl. Phys. Lett., 2003, vol. 82, pp. 370–72.CrossRefADSGoogle Scholar
  11. 11.
    T. Wada and A. Inoue: Mater. Trans., JIM, 2004, vol. 45, pp. 2761–65.CrossRefGoogle Scholar
  12. 12.
    T. Wada, F. Qin, X. Wang, A. Inoue, and M. Yoshimura: Mater. Trans., JIM, 2007, vol. 48, pp. 2381–84.CrossRefGoogle Scholar
  13. 13.
    X.H. Chen, Y. Zhang, X.C. Zhang, X.D. Hui, B.C. Wei, and G.L. Chen: Electrochem. Solid-State Lett., 2007, vol. 10, pp. E21–E23.CrossRefGoogle Scholar
  14. 14.
    M.D. Demetriou, G. Duan, C. Veazey, K. De Blauwe, and W.L. Johnson: Scripta Mater., 2007, vol. 57, pp. 9–12.CrossRefGoogle Scholar
  15. 15.
    J. Jayaraj, B. Park, D. Kim, W. Kim, and E. Fleury: Scripta Mater., 2006, vol. 55, pp. 1063–66.CrossRefGoogle Scholar
  16. 16.
    A. Gebert, A.A. Kundig, L. Schultz, and K. Hono: Scripta Mater., 2004, vol. 51, pp. 961–65.CrossRefGoogle Scholar
  17. 17.
    A.H. Brothers, D.C. Dunand, Q. Zheng, and J. Xu: J. Appl. Phys., 2007, vol. 102, art. no. 023508.Google Scholar
  18. 18.
    G. Xie, W. Zhang, D.V. Louzguine-Luzgin, H. Kimura, and A. Inoue: Scripta Mater., 2006, vol. 55, pp. 687–90.CrossRefGoogle Scholar
  19. 19.
    M.H. Lee and D.J. Sordelet: Appl. Phys. Lett., 2006, vol. 89, art. no. 021921.Google Scholar
  20. 20.
    K. Qiu, B. Yu, and Y. Ren: J. Univ. Sci. Technol. Beijing, 2007, vol. 14, pp. 59–63.Google Scholar
  21. 21.
    M. Lee and D. Sordelet: Scripta Mater., 2006, vol. 55, pp. 947–50.CrossRefGoogle Scholar
  22. 22.
    M.D. Demetriou, J.P. Schramm, C. Veazey, W.L. Johnson, J.C. Hanan, and N.B. Phelps: Appl. Phys. Lett., 2007, vol. 91, art. no. 161903.Google Scholar
  23. 23.
    V.M. Segal: Mater. Sci. Eng., A, 1999, vol. 271, pp. 322–33.CrossRefGoogle Scholar
  24. 24.
    I. Karaman, J. Robertson, J. Im, S. Mathaudhu, K. Hartwig, and Z. Luo: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 247–56.CrossRefGoogle Scholar
  25. 25.
    S.N. Mathaudhu, K. T. Hartwig, and I. Karaman: J. Non-Cryst. Solids, 2007, vol. 353, pp. 185–93.CrossRefADSGoogle Scholar
  26. 26.
    J. Robertson, J.-T. Im, I. Karaman, K.T. Hartwig, and I.E. Anderson: J. Non-Cryst. Solids, 2003, vol. 317, pp. 144–51.CrossRefADSGoogle Scholar
  27. 27.
    O. Senkov, S. Senkova, J. Scott, and D. Miracle: Mater. Sci. Eng., A, 2005, vol. 393, pp. 12–21.CrossRefGoogle Scholar
  28. 28.
    S. Mathaudhu, J. Im, R. Barber, I. Anderson, I. Karaman, and K. Hartwig: Supercooled Liquid Glass Transition and Bulk Metallic Glass, Materials Research Society Symposium Proceeding, Warrendale, PA, 2003, vol. 754, pp. 191–98.Google Scholar
  29. 29.
    S. Schneider: J. Phys.: Condens. Matter, 2001, vol. 13, pp. 7723–36.CrossRefADSGoogle Scholar
  30. 30.
    V.M. Segal: Mater. Sci. Eng., A, 1995, vol. 197, pp. 157–64.CrossRefGoogle Scholar
  31. 31.
    S.J. Oh and S.B. Kang: Mater. Sci. Eng., A, 2003, vol. 343, pp. 107–15.CrossRefGoogle Scholar
  32. 32.
    H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, NY, 1982, pp. 20–24 and 30–34.Google Scholar
  33. 33.
    Y. Kawamura, T. Shibata, A. Inoue, and T. Masumoto: Scripta Mater., 1997, vol. 37, pp. 431–36.CrossRefGoogle Scholar
  34. 34.
    G.E. Dieter: Mechanical Metallurgy, McGraw-Hill, New York, NY, 1986. p. 297.Google Scholar
  35. 35.
    T. Wada, M. Kinaka, and A. Inoue: J. Mater. Res., 2006, vol. 21, pp. 1041–47.CrossRefADSGoogle Scholar
  36. 36.
    T. Ide, M. Tane, T. Ikeda, S. Hyun, and H. Nakajima: J. Mater. Res., 2006, vol. 21, pp. 185–93.CrossRefADSGoogle Scholar
  37. 37.
    T. Wada, X. Wang, H. Kimura, and A. Inoue: Scripta Mater., 2008, vol. 59, pp. 1071–74.CrossRefGoogle Scholar
  38. 38.
    T. Wada, X. Wang, H. Kimura, and A. Inoue: Mater. Lett., 2009, vol. 63, pp. 858–60.CrossRefGoogle Scholar
  39. 39.
    S.N. Parikh: Orthopedics, 2002, vol. 25, pp. 1301–09.PubMedGoogle Scholar
  40. 40.
    A.L. Greer, K.L. Rutherford, and M. Hutchings: Int. Mater. Rev., 2002, vol. 47, pp. 87–112.CrossRefGoogle Scholar
  41. 41.
    R.D. Conner, W.L. Johnson, N.E. Paton, and W.D. Nix: J. Appl. Phys., 2003, vol. 94, pp. 904–11.CrossRefADSGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2009

Authors and Affiliations

  • Marie E. Cox
    • 1
  • Suveen N. Mathaudhu
    • 2
  • K. Ted Hartwig
    • 3
  • David C. Dunand
    • 1
  1. 1.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.United States Army Research LaboratoryWeapons and Materials Research DirectorateAberdeen Proving GroundUSA
  3. 3.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations