Plastic Flow Properties and Microstructural Evolution in an Ultrafine-Grained Al-Mg-Si Alloy at Elevated Temperatures

  • B.P. Kashyap
  • P.D. Hodgson
  • Y. Estrin
  • I. Timokhina
  • M.R. Barnett
  • I. Sabirov


An AA6082 alloy was subjected to eight passes of equal channel angular pressing at 100 °C, resulting in an ultrafine grain size of 0.2 to 0.4 μm. The tensile deformation behavior of the material was studied over the temperature range of 100 °C to 350 °C and strain rate range of 10−4 to 10−1 s−1. The evolution of microstructure under tensile deformation was investigated by analyzing both the deformation relief on the specimen surface and the dislocation structure. While extensive microshear banding was found at the lower temperatures of 100 °C to 150 °C, deformation at higher temperatures was characterized by cooperative grain boundary sliding and the development of a bimodal microstructure. Dislocation glide was identified as the main deformation mechanism within coarse grains, whereas no dislocation activity was apparent in the ultrafine grains.



The authors acknowledge financial support from the Australian Research Council through the ARC Centre of Excellence for Design in Light Metals and the Federation Fellowship awarded to PH. IS and MB thank Deakin University for partial funding through the Central Research Grants Scheme. Assistance of Dr. Pavel Cizek with TEM work is acknowledged. Useful discussions with Professor David Embury are much appreciated.


  1. 1.
    E.W. Lee and T.R. McNelley: Mater. Sci. Eng., 1987, vol. 96, pp. 253–58.CrossRefGoogle Scholar
  2. 2.
    P.K. Chaudhury and F.A. Mohamed: Metall. Trans. A, 1987, vol. 18A, pp. 2105–12.ADSGoogle Scholar
  3. 3.
    P.K. Chaudhury and F.A. Mohamed: Mater. Sci. Eng. A, 1988, vol. 101, pp. 13–23.CrossRefGoogle Scholar
  4. 4.
    M. Cabibbo, C. Scalabroni, and E. Evangelista: Metall. Sci. Technol., 2006, vol. 24, pp. 31–40.Google Scholar
  5. 5.
    L.P. Troeger and E.A. Starke: Mater. Sci. Eng. A, 2000, vol. 293, pp. 19–29. CrossRefGoogle Scholar
  6. 6.
    L.P. Troeger and E.A. Starke: Mater. Sci. Eng. A, 2000, vol. 277, pp. 102–13. CrossRefGoogle Scholar
  7. 7.
    D.G. Morris, I. Gutierrez-Urrutia, and M.A. Muñoz-Morris: J. Mater. Sci., 2007, vol. 42, pp. 1439–43.CrossRefADSGoogle Scholar
  8. 8.
    I.J. Polmear: Light Alloys—Metallurgy of the Light Metals, Arnold, London, 1995.Google Scholar
  9. 9.
    J. Mao, T. Imai, S. Dong, N. Saito, I. Shigematsu, S. Kojima, and T. Ishikawa: Scripta Mater., 2003, vol. 49, pp. 1061–66.CrossRefGoogle Scholar
  10. 10.
    W.J. Kim, S.H. Hong, and J.H. Lee: Mater. Sci. Eng., A., 2001, vol. 298, pp. 166–73. CrossRefGoogle Scholar
  11. 11.
    M. Mabuchi and K. Higashi: Scripta Mater., 1996, vol. 34, pp. 1893–97.CrossRefGoogle Scholar
  12. 12.
    T.G. Nieh, T. Imai, J. Wadsworth, and S. Kojima: Scripta Metall. Mater., 1994, vol. 31, pp. 1685–90.CrossRefGoogle Scholar
  13. 13.
    G.W. Nieman, J.R. Weertman, and R.W. Siegel: Nanostr. Mater., 1992, vol. 1, pp. 185–90.CrossRefGoogle Scholar
  14. 14.
    G.W. Nieman, J.R. Weertman, and R.W. Siegel: Scripta Metall. Mater., 1990, vol. 24, pp. 145–50.CrossRefGoogle Scholar
  15. 15.
    S.R. Agnew, B.R. Elliott, C.J. Youngdahl, K.J. Hemker, and J.R. Weertman: Mater. Sci. Eng. A, 2000, vol. 285, pp. 391–96. CrossRefGoogle Scholar
  16. 16.
    R.Z. Valiev, A.V. Korznikov, and R.R. Mulyukov: Mater. Sci. Eng. A, 1993, vol. 168, pp. 141–48.CrossRefGoogle Scholar
  17. 17.
    M.G. Zelin and A.K. Mukherjee: Acta Metall. Mater., 1995, vol. 43, pp. 2359–72.CrossRefGoogle Scholar
  18. 18.
    Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes, and T.G. Langdon: Acta Mater., 2000, vol. 48, pp. 3633–40.CrossRefGoogle Scholar
  19. 19.
    J.R. Weertman: Mater. Sci. Eng. A, 1993, vol. 166, pp. 161–67.CrossRefGoogle Scholar
  20. 20.
    S.X. McFadden, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev, and A.K. Mukherjee: Nature, 1999, vol. 398, pp. 684–86.CrossRefADSGoogle Scholar
  21. 21.
    I. Sabirov, Y. Estrin, M.R. Barnett, I. Timokhina, and P.D. Hodgson: Scripta Mater., 2008, vol. 58, pp. 163–66.Google Scholar
  22. 22.
    I. Sabirov, M.R. Barnett, Y. Estrin, and P.D. Hodgson: Scripta Mater., 2009, vol. 61, pp. 181–84.CrossRefGoogle Scholar
  23. 23.
    Y. Huang and T.G. Langdon: Mater. Sci. Eng. A, 2003, vol. 358, pp. 114–21.CrossRefGoogle Scholar
  24. 24.
    I. Sabirov, Y. Estrin, M.R. Barnett, I. Timokhina, and P.D. Hodgson: Acta Mater., 2008, vol. 56, pp. 2223–30.CrossRefGoogle Scholar
  25. 25.
    N.Q. Chinh, P. Szommer, Z. Horita, and T.G. Langdon: Adv. Mater., 2006, vol. 18, pp. 34–40.CrossRefGoogle Scholar
  26. 26.
    R.Z. Valiev and T.G. Langdon: Prog. Mater. Sci., 2006, vol. 51, pp. 881–981.CrossRefGoogle Scholar
  27. 27.
    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, pp. 103–89.CrossRefGoogle Scholar
  28. 28.
    M.A. Meyers, A. Mishra, and D.J. Benson: Prog. Mater. Sci., 2006, vol. 51, pp. 427–556.CrossRefGoogle Scholar
  29. 29.
    A.P. Zhilyaev and T.G. Langdon: Prog. Mater. Sci., 2008, vol. 53, pp. 893–979.CrossRefGoogle Scholar
  30. 30.
    P.B. Hirsch, R.B. Nicholson, A. Howie, D.W. Pashley, and M.J. Whelan: Electron Microscopy of Thin Crystals, Butterworth and Co., London, 1965.Google Scholar
  31. 31.
    T. Hebesberger, H.P. Stüwe, A. Vorhauer, F. Wetscher, and R. Pippan: Acta Mater., 2005, vol. 53, pp. 393–402. CrossRefGoogle Scholar
  32. 32.
    S.Y. Mironov, G.A. Salishchev, M.M. Myshlyaev, and R. Pippan: Mater. Sci. Eng. A, 2006, vol. 418, pp. 257–67.CrossRefGoogle Scholar
  33. 33.
    R.Z. Valiev, V.Y. Gertsman, and O.A. Kaibyshev: Phys. Status Solidi A, 1986, vol. 97, pp. 11–56.CrossRefGoogle Scholar
  34. 34.
    L. Lodgaard and N. Ryum: Mater. Sci. Eng. A, 2000, vol. 283, pp. 144–52.CrossRefGoogle Scholar
  35. 35.
    H. Hirasawa: Scripta Metall., 1975, vol. 9, pp. 955–58.CrossRefGoogle Scholar
  36. 36.
    E. Cerri and P. Leo: Mater. Sci. Eng. A, 2005, vols. 410–411, pp. 226–29.Google Scholar
  37. 37.
    R. Islamgaliev, N. Yunusova, I. Sabirov, A. Sergueeva, and R. Valiev: Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 877–81.Google Scholar
  38. 38.
    D. Caillard and J.L. Martin: Thermally Activated Mechanisms in Crystal Plasticity, Pergamon Materials Series, Elsevier, Oxford, United Kingdom, 2003, vol. 8.Google Scholar
  39. 39.
    R.W. Hayes, D. Witkin, F. Zhou, and E.J. Lavernia: Acta Mater., 2004, vol. 52, pp. 4259–71.CrossRefGoogle Scholar
  40. 40.
    S.S. Kim, M.J. Haynes, and R.P. Gangloff: Mater. Sci. Eng. A, 1995, vol. 203, pp. 256–71.CrossRefGoogle Scholar
  41. 41.
    D. Jia, K.T. Ramesh, and E. Ma: Acta Mater., 2003, vol. 51, pp. 3495–3509.CrossRefGoogle Scholar
  42. 42.
    A. Vinogradov, S. Hashimoto, V. Patlan, and K. Kitagawa: Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 862–66.Google Scholar
  43. 43.
    Y. Ivanisenko, L. Kurmanaeva, J. Weissmueller, K. Yang, J. Markmann, H. Rösner, T. Scherer, and H.J. Fecht: Acta Mater., 2009, vol. 57, pp. 3391–3401.CrossRefGoogle Scholar
  44. 44.
    R. Kaibyshev, O. Sitdikov, I. Mazurina, and D.R. Lesuer: Mater. Sci. Eng. A, 2002, vol. 334, pp. 104–13.CrossRefGoogle Scholar
  45. 45.
    H.J. Frost and M.F. Ashby: Deformation Mechanism Maps, Pergamon Press, Oxford, United Kingdom, 1982.Google Scholar
  46. 46.
    J.R. Weertman: J. Appl. Phys., 1957, vol. 28, pp. 362–66.CrossRefADSGoogle Scholar
  47. 47.
    H. Van Swygenhoven and J.R. Weertman: Mater. Today, 2006, vol. 9, pp. 24–31.CrossRefGoogle Scholar
  48. 48.
    I. Charit and R.S. Mishra: Acta Mater., 2005, vol. 53, pp. 4211–23.CrossRefGoogle Scholar
  49. 49.
    N. Balasubramanian and T.G. Langdon: Mater. Sci. Eng. A., 2005, vols. 410–411, pp. 476–79.Google Scholar
  50. 50.
    A. Tikhonovsky, M. Bartsch, and U. Messerschmidt: Phys. Status Solidi, 2004, vol. 201, pp. 26–45.CrossRefADSGoogle Scholar
  51. 51.
    U.F. Kocks: Encyclopedia of Materials: Science and Technology, Elsevier, Oxford, 2008, pp. 7084–88.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2009

Authors and Affiliations

  • B.P. Kashyap
    • 1
  • P.D. Hodgson
    • 2
    • 3
  • Y. Estrin
    • 3
    • 4
    • 6
  • I. Timokhina
    • 2
  • M.R. Barnett
    • 2
    • 3
  • I. Sabirov
    • 5
  1. 1.Department of Metallurgical Engineering and Materials ScienceIIT BombayPowaiIndia
  2. 2.Centre for Material and Fibre Innovation, Institute of Technology Research and InnovationDeakin UniversityWaurn PondsAustralia
  3. 3.ARC Centre of Excellence for Design in Light Metals, Department of Materials EngineeringMonash UniversityClaytonAustralia
  4. 4.CSIRO Division of Materials Science and EngineeringClayton SouthAustralia
  5. 5.Instituto Madrileño de Estudios Avanzados de Materiales (IMDEA-Materiales)E.T.S. de Ingenieros de CaminosMadridSpain
  6. 6.Deakin UniversityWaurn PondsAustralia

Personalised recommendations