Metallurgical and Materials Transactions A

, Volume 40, Issue 2, pp 275–277 | Cite as

Fabrication of Porous Aluminum by Friction Stir Processing

  • Yoshihiko HangaiEmail author
  • Takao Utsunomiya


Closed-cell porous aluminum was fabricated by friction stir processing (FSP). Porous aluminum with a porosity of about 50 pct was successfully fabricated in a short time with low energy consumption and using inexpensive aluminum plates. Multipass FSP was efficient for fabricating high-porosity and high-quality porous aluminum. The results of the present study show that the FSP technique has high potential for fabricating porous aluminum at a low cost by a more environmentally friendly process.


Friction Stir Processing Porous Aluminum Titanium Hydride Friction Stir Processing Tool Friction Stir Processing Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


The authors thank Professor K. Saito, Gunma University, for his helpful advice on conducting the experiments, and Professor H. Kumehara, Gunma University, for fruitful discussions throughout this study.


  1. 1.
    J. Banhart: Progr. Mater. Sci., 2001, vol. 46, pp. 559–632CrossRefGoogle Scholar
  2. 2.
    H. Nakajima: Progr. Mater. Sci., 2007, vol. 52, pp. 1091–73CrossRefGoogle Scholar
  3. 3.
    H.D. Kunze, J. Baumeister, J. Banhart, M. Weber: Powder Metall. Int., 1993, vol. 25, pp. 182–85Google Scholar
  4. 4.
    F. Baumgartner, I. Duarte, J. Banhart: Adv. Eng. Mater., 2000, vol. 2, pp. 168–74CrossRefGoogle Scholar
  5. 5.
    I. Duarte, J. Banhart: Acta Mater., 2000, vol. 48, pp. 2349–62CrossRefGoogle Scholar
  6. 6.
    K. Kitazono, E. Sato, K. Kuribayashi: Scripta Mater., 2004, vol. 50, pp. 495–98CrossRefGoogle Scholar
  7. 7.
    K. Kitazono, S. Nishizawa, E. Sato, T. Motegi: Mater. Trans., 2004, vol. 45, pp. 2389–94CrossRefGoogle Scholar
  8. 8.
    R.S. Mishra, Z.Y. Ma: Mater. Sci. Eng. R-Rep., 2005, vol. 50, pp. 1–78zbMATHCrossRefGoogle Scholar
  9. 9.
    Z.Y. Ma: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 642–58CrossRefADSGoogle Scholar
  10. 10.
    R.S. Mishra, Z.Y. Ma, I. Charit: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2003, vol. 341, pp. 307–10Google Scholar
  11. 11.
    C.J. Lee, J.C. Huang, P.J. Hsieh: Scripta Mater., 2006, vol. 54, pp. 1415–20CrossRefGoogle Scholar
  12. 12.
    Y. Morisada, H. Fujii, T. Nagaoka, M. Fukusumi: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 2006, vol. 433, pp. 50–54Google Scholar
  13. 13.
    Y.S. Sato, S.H.C. Park, A. Matsunaga, A. Honda, H. Kokawa: J. Mater. Sci., 2005, vol. 40, pp. 637–42CrossRefGoogle Scholar
  14. 14.
    J.Q. Su, T.W. Nelson, C.J. Sterling: Scripta Mater., 2005, vol. 52, pp. 135–40CrossRefGoogle Scholar
  15. 15.
    E. Koza, M. Leonowicz, S. Wojciechowski, F. Simancik: Mater. Lett., 2004, vol. 58, pp. 132–35CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2008

Authors and Affiliations

  1. 1.Department of Mechanical System EngineeringGunma UniversityKiryuuJapan
  2. 2.Research Organization of Advanced EngineeringShibaura Institute of TechnologySaitamaJapan

Personalised recommendations