Dependency of Recrystallization Mechanism to the Initial Grain Size

Article

Abstract

The effect of initial grain size on the recrystallization behavior of a type 304 austenitic stainless steel during and following hot deformation was investigated using hot torsion. The refinement of the initial grain size to 8 μm, compared with an initial grain size of 35 μm, had considerable effects on the dynamic recrystallization (DRX) and post-DRX phenomena. For both DRX and post-DRX, microstructural investigations using electron backscattered diffraction confirmed an interesting transition from conventional (discontinuous) to continuous DRX with a decrease in the initial grain size. Also, there were unexpected effects of initial grain size on DRX and post-DRX grain sizes.

References

  1. 1.
    A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson: Mater. Sci. Eng. A, 2008, vol. 458, pp. 664–72Google Scholar
  2. 2.
    A. Belyakov, H. Miura, and T. Sakai: Mater. Sci. Eng. A, 1998, vol. 255, pp. 139–47CrossRefGoogle Scholar
  3. 3.
    C.M. Sellars: in Hot Working and Forming Process, C.M. Sellars, C.H.J. Davies, eds., TMS, Warrendale, PA, 1979, pp. 3–15Google Scholar
  4. 4.
    A. Dehghan-Manshadi, H. Beladi, M.R. Barnett, and P.D. Hodgson: Mater. Forum, 2004, vols. 467–470, pp. 1163–68Google Scholar
  5. 5.
    T. Sakai, and J.J. Jonas: Acta Metall., 1984, vol. 32, pp. 189–209CrossRefGoogle Scholar
  6. 6.
    A. Dehghan-Manshadi, and P.D. Hodgson: ISIJ Int., 2007, vol. 47, pp. 1799–1803CrossRefGoogle Scholar
  7. 7.
    A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson: Metall. Mater. Trans. A, 2008, vol. 31A, pp. 1359–70CrossRefGoogle Scholar
  8. 8.
    A. Dehghan-Manshadi, M.R. Barnett, and M.A. Hodgson: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1371–81CrossRefGoogle Scholar
  9. 9.
    P.J. Wray: Metall. Trans. A, 1984, vol. 15A, pp. 2009–19Google Scholar
  10. 10.
    P.J. Wray: Metall. Trans. A, 1975, vol. 6A, pp. 1197–1203Google Scholar
  11. 11.
    A. Belyakov, H. Miura, and T. Sakai: Scripta Mater., 2000, vol. 43, pp. 21–26CrossRefGoogle Scholar
  12. 12.
    M. El Wahabi, L. Gavard, F. Montheillet, J.M. Cabrera, and J.M. Prado: Acta Mater., 2005, vol. 53, pp. 4605–12CrossRefGoogle Scholar
  13. 13.
    F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 1st ed., Pergamon Press, Oxford, United Kingdom, 1996Google Scholar
  14. 14.
    A. Belyakov, T. Sakai, H. Miura, R. Kaibyshev, and K. Tsuzaki: Acta Mater., 2002, vol. 50, pp. 1547–57CrossRefGoogle Scholar
  15. 15.
    C. Donadille, C. Rossard, and B. Thomas: in Annealing Processes—Recovery, Recrystallization, and Grain Growth, 7th Risø Int. Symp. Metallurgy and Materials Science, N. Hansen, D. Jull Jensen, T. Leffers, and B. Ralph, eds., Risø National Laboratory, Røskilde, Denmark, 1986, pp. 285–90Google Scholar
  16. 16.
    H. Jazaeri, and F.J. Humphreys: Acta Mater., 2004, vol. 52, pp. 3239–50CrossRefGoogle Scholar
  17. 17.
    H. Jazaeri, and F.J. Humphreys: Mater. Sci. Forum, 2002, vols. 396–402, pp. 551–56Google Scholar
  18. 18.
    A. Galeyev, R. Kaibyshev, and T. Sakai: Mater. Sci. Forum, 2003, vols. 419–422, pp. 509–14Google Scholar
  19. 19.
    A. Belyakov, Y. Kimura, and K. Tsuzaki: Mater. Sci. Eng. A, 2005, vol. 403, pp. 249–59CrossRefGoogle Scholar
  20. 20.
    P. Cizek, V. Safek, and V. Cerny: Hutnicke Listy, 1989, vol. 43, pp. 99–106Google Scholar
  21. 21.
    F. Gao, Y. Xu, and K. Xia: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 21–27CrossRefGoogle Scholar
  22. 22.
    H. Jazaeri, and F.J. Humphreys: Acta Mater., 2004, vol. 52, pp. 3251–62CrossRefGoogle Scholar
  23. 23.
    C. Roucoules, P.D. Hodgson, S. Yue, and J.J. Jonas: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 389–400CrossRefGoogle Scholar
  24. 24.
    A. Najafi-Zadeh, J.J. Jonas, G.R. Stewart, and E.I. Poliak: Metall. Mater. Trans. A, 2006, vol. 36A, pp. 1899–1906CrossRefGoogle Scholar
  25. 25.
    N.D. Ryan, and H.J. McQueen: Can. Metall. Q., 1990, vol. 29, pp. 147–62Google Scholar
  26. 26.
    P.D. Hodgson, D.C. Collinson, and B. Perrett: in 7th Int. Symp. Physical Simulation, H.G. Suzuki, T. Sakai, F. Matsuda, eds., NRIM, Tsukuba, Japan, 1997, pp. 219–29Google Scholar
  27. 27.
    R.L. Higginson, and C.M. Sellars: Worked Examples in Quantitive Metallography, Maney Publishing, London, 2003, pp. 16–22Google Scholar
  28. 28.
    J.P. Sah, C.J. Richardson, and C.M. Sellars: Met. Sci., 1974, vol. 8, pp. 325–31Google Scholar
  29. 29.
    A. Oudin, M.R. Barnett, and P.D. Hodgson: Mater. Sci. Eng. A, 2004, vol. 367, pp. 282–94CrossRefGoogle Scholar
  30. 30.
    C.M. Sellars, and W.J. McTegart: Acta Metall., 1966, vol. 14, pp. 1136–38CrossRefGoogle Scholar
  31. 31.
    J.L. Uvira, and J.J. Jonas: Trans. Metall. Soc. AIME, 1968, vol. 242, pp. 1619–26Google Scholar
  32. 32.
    S.I. Kim, and Y.C. Yoo: Mater. Sci. Eng. A, 2001, vol. 311, pp. 108–13CrossRefGoogle Scholar
  33. 33.
    W. Roberts, H. Benden, and B. Alben: Metals Sci., 1979, vol. 13, pp. 195–203Google Scholar
  34. 34.
    W.P. Sun, and E.B. Hawbolt: ISIJ Int., 1997, vol. 37, pp. 1000–09CrossRefGoogle Scholar
  35. 35.
    S. Zahiri and P.D. Hodgson: Maters. Sci. Technol., 2004, vol. 20, pp. 456–64Google Scholar
  36. 36.
    C.M. Sellars: J.J. Jonas Symp., Thermomechanical Processing of Steel, S. Yue, E. Es-Sadiqi, eds., TMS, Warrendale, PA, 2000, pp. 3–19Google Scholar
  37. 37.
    D.W. Suh, J.Y. Cho, and K. Nagai: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3399–3408CrossRefGoogle Scholar
  38. 38.
    S. Gourdet, and F. Montheillet: Acta Mater., 2003, vol. 51, pp. 2658–99CrossRefGoogle Scholar
  39. 39.
    H. Miura, T. Sakai, H. Hamji, and J.J. Jonas: Scripta Mater., 2004, vol. 50, pp. 65–69CrossRefGoogle Scholar
  40. 40.
    S. Andiarwanto, H. Miura, and T. Sakai: Mater. Sci. Forum, 2002, vols. 408–412, pp. 761–66Google Scholar
  41. 41.
    H. Miura, H. Hamji, and T. Sakai: Mater. Sci. Forum, 2002, vols. 408–412, pp. 755–60CrossRefGoogle Scholar
  42. 42.
    T. Maki, K. Akasaka, and I. Tamura: in Thermomechanical Processing of Microalloyed Austenite, A.J. DeArdo, G.A. Ratz, and P.J. Wray, eds., TMS-AIMS, Pittsburgh, 1982, pp. 217–34Google Scholar
  43. 43.
    A. Belyakov, T. Sakai, H. Miura, and R. Kaibyshev: ISIJ Int., 1999, vol. 39, pp. 592–99CrossRefGoogle Scholar
  44. 44.
    I. Salvatori, T. Inoue, and K. Nagai: ISIJ Int., 2002, vol. 42, pp. 744–50CrossRefGoogle Scholar
  45. 45.
    S. Gourdet, and F. Montheillet: Acta Mater., 2002, vol. 50, pp. 2801–12CrossRefGoogle Scholar
  46. 46.
    A. Belyakov, K. Tsuzaki, H. Miura, and T. Sakai: Acta Mater., 2003, vol. 51, pp. 847–61CrossRefGoogle Scholar
  47. 47.
    T. Sakai, A. Belyakov, and H. Miura: 1st Joint Int. Conf. Recrystallization and Grain Growth, G. Gottstein, D.A. Molodov, eds., Springer-Verlag, New York, NY, 2001, pp. 669–82Google Scholar
  48. 48.
    H. Jazaeri, and F.J. Humphreys: J. Microsc., 2004, vol. 213, pp. 241–46CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2008

Authors and Affiliations

  1. 1.Faculty of EngineeringUniversity of WollongongWollongongAustralia
  2. 2.Centre for Material and Fibre InnovationDeakin UniversityWaurn PondsAustralia

Personalised recommendations