Metallurgical and Materials Transactions A

, Volume 39, Issue 11, pp 2656–2665 | Cite as

Evolution of Structure, Composition, and Stress in Nanoporous Gold Thin Films with Grain-Boundary Cracks

Article

Abstract

Nanoporous gold (np-Au) thin films were fabricated from Au-Ag alloy films sputtered onto substrates. At several stages of dealloying, the evolution of the microstructure and Ag content were analyzed and stress in the np-Au thin films was measured. A nanoporous structure evolved almost immediately throughout the film thickness, and the ligament width coarsened during further dealloying, with a time dependence of t 1/8. The initial alloy films, which contained 25 at. pct Au, became stress free after extended dealloying and during thermal cycling up to 200 °C. Preferential dissolution caused cracking at grain boundaries, which accommodated a portion of the volume contraction from dealloying, but the films nonetheless remained attached to their substrates.

Notes

Acknowledgments

The authors thank Ms. Sofie Burger for her assistance with the measurement of the ligament widths and Mr. Larry Rice for his support in using the SEM. The authors also acknowledge the Donors of the American Chemical Society Petroleum Research Fund (Grant No. 43324-G10), for support of this research.

References

  1. 1.
    D. van Noort, C.F. Mandenius: Biosens. Bioelectron., 2000, vol. 15, pp. 203–09CrossRefGoogle Scholar
  2. 2.
    Y. Ding, M.W. Chen, J. Erlebacher: J. Am. Chem. Soc., 2004, vol. 126, pp. 6876–77CrossRefGoogle Scholar
  3. 3.
    D. Kramer, R.N. Viswanath, J. Weissmuller: Nano Lett., 2004, vol. 4, pp. 793–96CrossRefGoogle Scholar
  4. 4.
    M.B. Cortie, A.I. Maaroof, G.B. Smith: Gold Bull., 2005, vol. 38, pp. 14–22Google Scholar
  5. 5.
    J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki: Nature, 2001, vol. 410, pp. 450–53CrossRefGoogle Scholar
  6. 6.
    J. Erlebacher, K. Sieradzki: Scripta Mater., 2003, vol. 49, pp. 991–96CrossRefGoogle Scholar
  7. 7.
    J. Erlebacher: J. Electrochem. Soc., 2004, vol. 151, pp. C614–26CrossRefGoogle Scholar
  8. 8.
    R. Li, K. Sieradzki: Phys. Rev. Lett., 1992, vol. 68, pp. 1168–71CrossRefGoogle Scholar
  9. 9.
    J. Biener, A.M. Hodge, A.V. Hamza, L.M. Hsiung, J.H. Satcher: J. Appl. Phys., 2005, vol. 97, pp. 024301-1–024301-4CrossRefGoogle Scholar
  10. 10.
    A.M. Hodge, J. Biener, L.L. Hsiung, Y.M. Wang, A.V. Hamza, J.H. Satcher: J. Mater. Res., 2005, vol. 20, pp. 554–57CrossRefGoogle Scholar
  11. 11.
    D. Lee, M.H. Zhao, X.D. Wei, X. Chen, S.C. Jun, J. Hone, E.G. Herbert, W.C. Oliver, J.W. Kysar: Appl. Phys. Lett., 2006, vol. 89, pp. 111916-1–111916-3Google Scholar
  12. 12.
    C.A. Volkert, E.T. Lilleodden, D. Kramer, J. Weissmuller: Appl. Phys. Lett., 2006, vol. 89, pp. 061920-1–061920-3CrossRefGoogle Scholar
  13. 13.
    J.Z. Zhu, E. Seker, H. Bart-Smith, M.R. Begley, R.G. Kelly, G. Zangari, W.K. Lye, M.L. Reed: Appl. Phys. Lett., 2006, vol. 89, pp. 133104-1–133104-3Google Scholar
  14. 14.
    A.M. Hodge, J. Biener, J.R. Hayes, P.M. Bythrow, C.A. Volkert, A.V. Hamza: Acta Mater., 2007, vol. 55, pp. 1343–49CrossRefGoogle Scholar
  15. 15.
    D. Lee, X. Wei, X. Chen, M. Zhao, S.C. Jun, J. Hone, E.G. Herbert, W.C. Oliver, J.W. Kysar: Scripta Mater., 2007, vol. 56, pp. 437–40CrossRefGoogle Scholar
  16. 16.
    L.J. Gibson, M.F. Ashby: Cellular Solids: Structures and Properties, 2nd ed., Cambridge University Press, Cambridge, United Kingdom, 1997, p. 206Google Scholar
  17. 17.
    S. Burger, Y. Sun, F. Yang, and T.J. Balk: University of Kentucky, Lexington, KY, unpublished research, 2007Google Scholar
  18. 18.
    Y. Ding, J. Erlebacher: J. Amer. Chem. Soc., 2003, vol. 125, pp. 7772–73CrossRefGoogle Scholar
  19. 19.
    Y. Ding, Y.J. Kim, J. Erlebacher: Adv. Mater., 2004, vol. 16, pp. 1897–900CrossRefGoogle Scholar
  20. 20.
    S. Parida, D. Kramer, C.A. Volkert, H. Rosner, J. Erlebacher, J. Weissmuller: Phys. Rev. Lett., 2006, vol. 97, pp. 035504-1–035504-4CrossRefGoogle Scholar
  21. 21.
    W.D. Nix: Metall. Trans. A, 1989, vol. 20A, pp. 2217–45Google Scholar
  22. 22.
    Y. Sun, T.J. Balk: Mater. Res. Soc. Symp. Proc., 2006, vol. 924, pp. Z1.2.1–6Google Scholar
  23. 23.
    N.A. Senior, R.C. Newman: Nanotechnology, 2006, vol. 17, pp. 2311–16CrossRefGoogle Scholar
  24. 24.
    M.C. Dixon, T.A. Daniel, M. Hieda, D.M. Smilgies, M.H.W. Chan, D.L. Allara: Langmuir, 2007, vol. 23, pp. 2414–22CrossRefGoogle Scholar
  25. 25.
    X. Lu, T.J. Balk, R. Spolenak, E. Arzt: Thin Solid Films, 2007, vol. 515, pp. 7122–26CrossRefGoogle Scholar
  26. 26.
    Y. Sun, J. Ye, Z. Shan, A.M. Minor, T.J. Balk: JOM, 2007, vol. 59, pp. 54–58CrossRefGoogle Scholar
  27. 27.
    B.D. Cullity, S.R. Stock: Elements of X-Ray Diffraction, 3rd ed., Prentice-Hall, Inc., Upper Saddle River, NJ, 2001, pp. 638–39Google Scholar
  28. 28.
    R.W. Balluffi, S.M. Allen, W.C. Carter: Kinetics of Materials, 1st ed., John Wiley & Sons, Inc., Hoboken, NJ, 2005, pp. 368–402Google Scholar
  29. 29.
    Y. Sun, K.P. Kucera, S.A. Burger, T.J. Balk: Scripta Mater., 2008, vol. 58, pp. 1018–21CrossRefGoogle Scholar
  30. 30.
    L.B. Freund, S. Suresh: Thin Film Materials: Stress, Defect Formation, and Surface Evolution, 1st ed., Cambridge University Press, Cambridge, United Kingdom, 2003, pp. 197–200Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2008

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringUniversity of KentuckyLexingtonUSA

Personalised recommendations