Metallurgical and Materials Transactions A

, Volume 39, Issue 11, pp 2645–2655

Analysis of Severe Plastic Deformation by Large Strain Extrusion Machining

  • M. Sevier
  • H.T.Y. Yang
  • W. Moscoso
  • S. Chandrasekar
Article

Abstract

Large strain extrusion machining (LSEM), a constrained chip formation process, is examined as a method of severe plastic deformation (SPD) at small deformation rates for production of ultra-fine-grained (UFG) materials. A finite element procedure is developed for prediction of deformation field parameters such as effective strain, strain rate, and their variation across the thickness of the chip for various cutting (extrusion) ratios. The cutting force (extrusion pressure) and hydrostatic pressures within the deformation zone are also analyzed. A consideration of the deformation occurring in chip formation suggests bounds on the extrusion ratios that can be realized. Implications of the results for production of bulk chip samples of controlled geometry and with an UFG microstructure are discussed.

References

  1. 1.
    R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Progr. Mater. Sci., 2000, vol. 45 (2), pp. 103–89CrossRefGoogle Scholar
  2. 2.
    V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy, V. Kopylov: Russ. Metall., 1981, vol. 1, pp. 99–105Google Scholar
  3. 3.
    R.Z. Valiev, A.V. Korznikov, M.M. Mulyukov: Mater. Sci. Eng. A, 1993, vol. 168, pp. 141–48CrossRefGoogle Scholar
  4. 4.
    T.L. Brown, S. Swaminathan, S. Chandrasekar, W.D. Compton, A.H. King, K.P. Trumble: J. Mater. Res., 2002, vol. 17, pp. 2484–88CrossRefGoogle Scholar
  5. 5.
    M. Ravi Shankar, S. Chandrasekar, A.H. King, W.D. Compton: Acta Mater., 2005, vol. 53, pp. 4781–93CrossRefGoogle Scholar
  6. 6.
    C. Huang, T.G. Murthy, M.R. Shankar, R. M’Saoubi, S. Chandrasekar: Scripta Mater., 2008, vol. 58, pp. 663–66CrossRefGoogle Scholar
  7. 7.
    W. Moscoso, M. Ravi Shankar, J.B. Mann, W.D. Compton, S. Chandrasekar: J. Mater. Res., 2007, vol. 22 (1), pp. 201–05CrossRefGoogle Scholar
  8. 8.
    L. De Chiffre: Int. J. Mach. Tool Des. Res., 1976, vol. 16, pp. 137–44CrossRefGoogle Scholar
  9. 9.
    B.E. Klamecki: Ph.D. Thesis, University of Illinois at Urbana–Champaign, Urbana, IL, 1973Google Scholar
  10. 10.
    T. Shirakashi and E. Usui: Proc. Int. Cong. Prod. Eng., Tokyo, 1974, pp. 535–40Google Scholar
  11. 11.
    J.S. Strenkowski, J.T. Carroll: J. Eng. Ind., 1985, vol. 107, pp. 349–54CrossRefGoogle Scholar
  12. 12.
    K. Iwata, K. Oskada, Y. Terasaka: J. Eng. Mater. Technol., 1974, vol. 106, pp. 132–38CrossRefGoogle Scholar
  13. 13.
    A.J.M. Shih, S. Chandrasekar, and H.T.Y. Yang: ASME Pub. PED, 1990, pp. 11–24Google Scholar
  14. 14.
    K. Komvopoulos, S.A. Erpenbeck: J. Eng. Ind., 1991, vol. 113, pp. 253–67Google Scholar
  15. 15.
    Z.C. Lin, K.T. Chu, W.C. Pan: J. Mater. Process. Technol., 1994, vol. 41, pp. 291–310CrossRefGoogle Scholar
  16. 16.
    B. Zhang, A. Bagchi: J. Eng. Ind., vol. 116, 1994, pp. 289–97CrossRefGoogle Scholar
  17. 17.
    M.C. Shaw: Metal Cutting Principles, Oxford University Press, Oxford, United Kingdom, 1984Google Scholar
  18. 18.
    I. Finnie: Mech. Eng., 1956, vol. 78, pp. 715–21Google Scholar
  19. 19.
    J.T. Carroll, J.S. Strenkowski: Int. J. Mech. Sci., 1988, vol. 30, pp. 899–20CrossRefGoogle Scholar
  20. 20.
    T.D. Marusich, M. Ortiz: Int. J. Num. Meth. Eng., 1995, vol. 38, pp. 3675–94CrossRefGoogle Scholar
  21. 21.
    V. Madhavan, S. Chandrasekar, T.N. Farris: J. Appl. Mech., 2000, vol. 67, pp. 128–39CrossRefGoogle Scholar
  22. 22.
    M. Sevier, S. Lee, M.R. Shankar, H.T.Y. Yang, S. Chandrasekar, W.D. Compton: Mater. Sci. Forum, 2006, vols. 503–504, pp 379–84Google Scholar
  23. 23.
    L. Olovsson, L. Nilsson, K. Simonsson: Comp. Struct., 1999, vol. 72, pp. 497–507CrossRefGoogle Scholar
  24. 24.
    M.R. Movahhedy, M.S. Gadala, Y. Altintas: Mach. Sci. Technol., 2000, vol. 4, pp. 15–42CrossRefGoogle Scholar
  25. 25.
    I.S. Jawahir, A.K. Balaji, R. Stevenson, and C.A. van Luttervelt: Symp. on Predictable Modeling in Metal Cutting as Means of Bridging Gap between Theory and Practice, J. Manuf. Sci. Eng., ASME IMECE, MED-6-2, 1997, pp. 3–12Google Scholar
  26. 26.
    C.A. van Luttervelt, T. Childs, I.S. Jawahir, F. Klocke: Ann. CIRP, 1998, vol. 47, pp. 587–626Google Scholar
  27. 27.
    D.J. Benson: Comp. Meth. Appl. Mech. Eng., 1989, vol. 72, pp. 305–50CrossRefGoogle Scholar
  28. 28.
    M. Kleiber: Incremental Finite Element Modeling in Non-Linear Solid Mechanics, John Wiley & Sons, New York, NY, 1989Google Scholar
  29. 29.
    ABAQUS, ABAQUS Theory Manual, Version 6.5, Hibbitt, Karlsson & Sorenson, Inc., Pawtucket, RI, 2004Google Scholar
  30. 30.
    I.C. Taig: “Structural Analysis by the Matrix Displacement Method,” English Electric Aviation Report S017, English Electric Aviation Ltd., England, 1961Google Scholar
  31. 31.
    B.M. Irons: J. AIAA, 1966, vol. 14, pp. 2035–37CrossRefGoogle Scholar
  32. 32.
    D.P. Flanagan, T. Belytschko: Int. J. Num. Meth. Eng., 1981, vol. 17, pp. 679–706CrossRefGoogle Scholar
  33. 33.
    M. Sevier, H.T.Y. Yang, S. Lee, S. Chandrasekar: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 927–38CrossRefGoogle Scholar
  34. 34.
    S. Lee, J. Hwang, M. Ravi Shankar, S. Chandrasekar, W.D. Compton: Metall. Mater. Trans. A, 2006, vol. 37A, pp 1633–43CrossRefGoogle Scholar
  35. 35.
    H.S. Kim: Mater. Sci. Eng. A, 2001, vol. 315, pp. 122–28CrossRefGoogle Scholar
  36. 36.
    S.J. Oh, S.B. Kang: Mater. Sci. Eng. A, 2003, vol. 343, pp. 107–15CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2008

Authors and Affiliations

  • M. Sevier
    • 1
    • 2
  • H.T.Y. Yang
    • 1
  • W. Moscoso
    • 3
  • S. Chandrasekar
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of CaliforniaSanta BarbaraUSA
  2. 2.ATA Engineering, Inc.HerndonUSA
  3. 3.Center for Materials Processing and Tribology, School of Industrial EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations