Metallurgical and Materials Transactions A

, Volume 39, Issue 13, pp 3170–3178 | Cite as

Diffuse Scattering and Monte Carlo Studies of Relaxor Ferroelectrics

Symposium: Neutron and X-Ray Studies for Probing Materials Behavior


A renewed interest in the field of ferroelectricity has taken place in recent years since the finding of exceptional piezoelectric properties in the lead-oxide class of relaxor ferroelectric materials typified by the disordered perovskite PbZn1/3Nb2/3O3 (PZN). Although PZN and numerous related materials have been extensively studied over a long period, a detailed understanding of the exact nature of their polar nanostructure has still not emerged. In this article, we describe the development of Monte Carlo computer models, which seek to account for the detailed three-dimensional (3-D) diffuse neutron scattering data that have been recorded from a single crystal of PZN. It has been established that the observed diffuse patterns are due to planar nanodomains oriented normal to the six \( \left\langle {{\text{110}}} \right\rangle \) directions, but there is still some uncertainty concerning the direction of the local Pb ionic shifts, which remains an area of controversy. It is argued that further detailed analysis and experiments in which data are recorded with the crystal in an applied field should allow these remaining issues to be resolved.


Monte Carlo Diffuse Scattering Displacement Model Diffuse Peak Azimuthal Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.E. Newnham: Acta Cryst., 1998, vol. A54, pp. 729–37Google Scholar
  2. 2.
    E. Cross: Nature, 2004, vol. 432, pp. 24–25CrossRefGoogle Scholar
  3. 3.
    G. Xu, Z. Zhong, Y. Bing, Z.-G. Ye, G. Shirane: Nat. Mater., 2006, vol. 5, pp. 134–40CrossRefGoogle Scholar
  4. 4.
    S.-E. Park, T.R. Shrout: J. Appl. Phys., 1997, vol. 82, pp. 1804–11CrossRefGoogle Scholar
  5. 5.
    R.F. Service: Science, 1997, vol. 275, pp. 1878–80CrossRefGoogle Scholar
  6. 6.
    M. Pecht, Y. Fukada, S. Rajagopal: IEEE Trans. on Electronics Packaging Manufacturing, 2004, vol. 27, pp. 221–32CrossRefGoogle Scholar
  7. 7.
    W.W. Wolny: Ceram. Int., 2004, vol. 30, pp. 1079–83.CrossRefGoogle Scholar
  8. 8.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura: Nature, 2004, vol. 432, pp. 84–87CrossRefGoogle Scholar
  9. 9.
    M. Davis: J. Electroceram., 2007, vol. 19, pp. 23–45CrossRefGoogle Scholar
  10. 10.
    W.-F. Rau, Y.U. Wang: Appl. Phys. Lett., 2007, vol. 90, p. 182906CrossRefGoogle Scholar
  11. 11.
    A.J. Bell: J. Mater. Sci., 2006, vol. 41, pp. 13–25CrossRefGoogle Scholar
  12. 12.
    K.A. Schönau, L.A. Schmitt, M. Knapp et al.: Phys. Rev. B, 2007, vol. 75, p. 184117CrossRefGoogle Scholar
  13. 13.
    T.R. Welberry: Diffuse X-ray Scattering and Models of Disorder, Oxford University Press, Oxford, United Kingdom, 2004Google Scholar
  14. 14.
    T.R. Welberry, R.L. Withers, S.C. Mayo: J. Solid State Chem., 1995, vol. 115, pp. 43–54CrossRefGoogle Scholar
  15. 15.
    T.R. Welberry, A.G. Christy: Phys. Chem. Miner., 1997, vol. 24, pp. 24–38CrossRefGoogle Scholar
  16. 16.
    T.R. Welberry, T.H. Proffen, M. Bown: Acta Cryst., 1998, vol. A54, pp. 661–74Google Scholar
  17. 17.
    T.R. Welberry: Acta Cryst., 2001, vol. A57, pp. 244–55Google Scholar
  18. 18.
    T.R. Welberry, D.J. Goossens, A.J. Edwards, W.I.F. David: Acta Cryst., 2001, vol. A57, pp. 101–09Google Scholar
  19. 19.
    T.R. Welberry, D.J. Goossens, W.I.F. David et al.: J. Appl. Cryst., 2003, vol. 36, pp. 1440–47CrossRefGoogle Scholar
  20. 20.
    A.L. Patterson: Phys. Rev., 1944, vol. 65, pp. 195–201CrossRefGoogle Scholar
  21. 21.
    N.E. Brese, M. O’Keeffe: Acta Cryst., Sect. B: Struct. Sci., 1991, vol. 47, p. 192CrossRefGoogle Scholar
  22. 22.
    T.R. Welberry, M.J. Gutmann, H. Woo et al.: J. Appl. Cryst., 2005, vol. 38, pp. 639–47CrossRefGoogle Scholar
  23. 23.
    T.R. Welberry, D.J. Goossens, M.J. Gutmann: Phys. Rev. B, 2006, vol. 74, p. 224108CrossRefGoogle Scholar
  24. 24.
    M. Pasciak, M. Wolcyrz, A. Pietraszko: Phys. Rev., 2007, vol. B76, p. 014117Google Scholar
  25. 25.
    T.R. Welberry and D.J. Goossens: J. Appl. Cryst., 2008, vol. 41, pp. 606–14CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2008

Authors and Affiliations

  1. 1.Research School of ChemistryAustralian National UniversityCanberraAustralia

Personalised recommendations