The Structure Dependence of Deformation Behavior of Transformation-Induced Plasticity–Assisted Steel Monitoring by In-Situ Neutron Diffraction

  • O. Muránsky
  • P. Šittner
  • J. Zrnik
  • E.C. Oliver
Symposium: Neutron and X-Ray Studies for Probing Materials Behavior


Tensile deformation behavior of two transformation-induced plasticity (TRIP)–assisted multiphase steels with slightly different microstructures due to different thermomechanical treatment conditions applied was investigated by in-situ neutron diffraction. The steel with lower austenite volume fraction (f γ  = 0.04) and higher volume fraction of needlelike bainite in the α-matrix exhibits higher yield stress (sample B, 600 MPa) but considerably lower elongation in comparison to the steel with higher austenite volume fraction (f γ  = 0.08), granular bainite, and polygonal ferrite matrix (sample A, 500 MPa). The neutron diffraction results have shown that the applied tensile load is redistributed at the yielding point in such a way that the retained austenite bears a significantly larger load than the α matrix during the TRIP-assisted steel deformation.


Ferrite Austenite Bainite Trip Steel Granular Bainite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the support from the ISIS RAL facility (Project No. RB620316) and the FP6 Marie Curie Research Training Network MULTIMAT (MRTN-CT-2004-505226). The financial support from the project of the Scientific Grant Agency of Slovak Republic (Contract No. MS 1/3218/06) is gratefully acknowledged.


  1. 1.
    T. Ros-Yanez, Y. Houbaert, and R. Petrov: Mater. Characterization, 2001, vol. 47, pp. 93–104CrossRefGoogle Scholar
  2. 2.
    E. Wirthl, A. Pichler, R. Angerer, P. Stiaszny, K. Hauzenberger, and P. Wolants: Int. Conf. on TRIP-Aided High Strength Ferrous Alloys, Wissenschaftsverlag Mainz GmbH, Aachen, 2002, p. 61Google Scholar
  3. 3.
    L. Zhao, J. Moreno, S. Kruijver, J. Sietsma, and S. van der Zwaag: Int. Conf. on TRIP-Aided High Strength Ferrous Alloys, Wissenschaftsverlag Mainz GmbH, Aachen, 2002, p. 141Google Scholar
  4. 4.
    H.K.D.H. Bhadeshia: ISIJ Int., 2002, vol. 42 (9), pp. 1059–60CrossRefGoogle Scholar
  5. 5.
    M.Y. Sherif, C. Garcia Mateo, T. Sourmail, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2004, vol. 20, pp. 319–22CrossRefGoogle Scholar
  6. 6.
    Y. Tomota, K. Kuroki, T. Mori, I. Tamura: Mater. Sci. Eng., 1976, vol. 24, pp. 85–94CrossRefGoogle Scholar
  7. 7.
    P.J. Jacques, E. Girault, P. Harlet, F. Delannay: ISIJ Int., 2001, vol. 41, pp. 1061–67CrossRefGoogle Scholar
  8. 8.
    J. Zrník, Z. Nový, P. Lukáš, O. Muránsky, P. Jenčuš, and J. Fiala: Proc. XIII Verformungskundliches Kolloquim, Institut für Verformungskunde und Hüttenmaschinen, Austria, Leoben, Mar. 2004, p. 291Google Scholar
  9. 9.
    E.C. Oliver, M.R. Daymond, P.J. Withers, T. Mori: Mater. Sci. Forum, 2002, vols. 404–407, pp. 489–94CrossRefGoogle Scholar
  10. 10.
    M.R. Daymond, H.G. Priesmeyer: Acta Mater., 2002, vol. 50, pp. 1613–26CrossRefGoogle Scholar
  11. 11.
    J.R. Santisteban, M.R. Daymond, L. Edwards, J.A. James: J. Appl. Cryst., 2006, vol. 39, pp. 812–25CrossRefGoogle Scholar
  12. 12.
    A. Larson and R.B. von Dreele: Technical Report LA UR-86-748, Los Alamos National Laboratory, Los Alamos, NM, 1994Google Scholar
  13. 13.
    Y. Tomota, H. Tokuda, Y. Adachi, M. Wakita, N. Minakava, A. Morici, and Z. Morii: Acta Mater., 2004, vol. 52, pp. 5737–45CrossRefGoogle Scholar
  14. 14.
    M. Hutchings, M. Whiters, P. Holden, and T. Lorentzen: Introduction to Characterization of Residual Stress by Neutron Diffraction, Taylor&Francis Group, Boca Raton, 2005Google Scholar
  15. 15.
    E.C. Oliver, M.R. Daymond, P.J. Withers: Acta Mater., 2004, vol. 52, pp. 1937–51CrossRefGoogle Scholar
  16. 16.
    O. Furnémont, P.J. Jacques, T. Pardoen, F. Lani, S. Godet, P. Hamlet, K. Colon, and F. Delannay: Int. Conf. on TRIP-Aided High Strength Ferrous Alloys, Wissenschaftsverlag Mainz GmbH, Aachen, 2002, p. 33Google Scholar
  17. 17.
    J. Hutchinson: Proc. R. Soc., 1970, vol. A319, pp. 247–72Google Scholar
  18. 18.
    V. Novák, P. Šittner: Mater. Sci. Eng. A, 2004, vol. 378 (1–2), pp. 490–98Google Scholar
  19. 19.
    P.A. Turner, C.N. Tomé: Acta Metall., 1994, vol. 42, pp. 4043–52CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2008

Authors and Affiliations

  • O. Muránsky
    • 1
    • 2
  • P. Šittner
    • 3
  • J. Zrnik
    • 4
    • 5
  • E.C. Oliver
    • 6
  1. 1.Nuclear Physics Institute v.v.i68 RezCzech Republic
  2. 2.Australian Nuclear Science and Technology Organisation, PMB 1MenaiAustralia
  3. 3.Institute of PhysicsPragueCzech Republic
  4. 4.COMTES FHTPlzenCzech Republic
  5. 5.Technical University of KosiceKosiceSlovak Republic
  6. 6.ISIS FacilitySTFC Rutherford Appleton LaboratoryChilton, DidcotUnited Kingdom

Personalised recommendations