Metallurgical and Materials Transactions A

, Volume 39, Issue 9, pp 2143–2147 | Cite as

Thickness of Anodic Titanium Oxides as a Function of Crystallographic Orientation of the Substrate

Article

Abstract

This work deals with the anodization-driven oxidation of titanium, studied as a function of the crystallographic orientation of the crystal grains of the substrate. On a polycrystalline surface, different colors appear on the surface after anodization under galvanostatic conditions at a fixed potential. The color of the oxides on individual grains is correlated to an independent set of reflectometry data relating color to thickness, to infer the approximate thickness of the oxide layer grown on each grain in the polycrystal. These data are further related to the crystallographic orientation of each grain as assessed by electron backscatter diffraction measurements. It is shown that crystallographic orientations close to (0001) lead to relatively slower oxidation as compared with inclined orientations.

References

  1. 1.
    B. Hanson: The Selection and Use of Titanium, The Institute of Materials, London, United Kingdom, 1995Google Scholar
  2. 2.
    Polymer Blends, vol. 2, Performance, D.R. Paul and C.B. Bucknall, eds., John Wiley & Sons, New York, NY, 2000Google Scholar
  3. 3.
    R.J.D. Tilley: Colour and Optical Properties of Materials, John Wiley & Sons, New York, NY, 2000Google Scholar
  4. 4.
    GretagMacbeth: Fundamentals of Color and Appearance, GretagMacbeth, New Windsor, NY, 1997Google Scholar
  5. 5.
    E. Gaul: J. Chem. Educ., 1993, vol. 70, pp. 176–79CrossRefGoogle Scholar
  6. 6.
    S. Van Gils, P. Mast, E. Stijns, H. Terryn: Surf. Coat. Technol., 2004, vol. 185, pp. 303–10CrossRefGoogle Scholar
  7. 7.
    J.L. Delplancke, M. Degrez, A. Fontana, R. Winand: Surf. Technol., 1982, vol. 16, pp. 153–62CrossRefGoogle Scholar
  8. 8.
    M.E. Sibert: J. Electrochem. Soc., 1963, vol. 110, pp. 65–72CrossRefGoogle Scholar
  9. 9.
    M.V. Diamanti, M.P. Pedeferri: Corros. Sci., 2007, vol. 49, pp. 939–48CrossRefGoogle Scholar
  10. 10.
    H.-J. Song, M.-K. Kim, G.-C. Jung, M.-S. Vang, Y.-J. Park: Surf. Coat. Technol., 2007, vol. 201, pp. 8738–45CrossRefGoogle Scholar
  11. 11.
    V. Randle: Int. Mater. Rev., 2004, vol. 49, pp. 1–11CrossRefGoogle Scholar
  12. 12.
    F.J. Humphreys: J. Mater. Sci., 2001, vol. 36, pp. 3833–54CrossRefGoogle Scholar
  13. 13.
    J.W. Schultze, B. Davepon, F. Karman, C. Rosenkranz, A. Schreiber, O. Voigt: Corros. Eng. Sci. Technol., 2004, vol. 39, pp. 45–52CrossRefGoogle Scholar
  14. 14.
    G.G.E. Seward, S. Celotto, D.J. Prior, J. Wheeler, R.C. Pond: Acta Mater., 2004, vol. 52, pp. 821–32CrossRefGoogle Scholar
  15. 15.
    A.D. Vlasov, J.S. Rez, M.L. Fil’chenkov: Crys. Res. Technol. (USA), 1988, vol. 23, pp. 1093–1101CrossRefGoogle Scholar
  16. 16.
    C.A. Schuh, K. Anderson, C. Orme: Surf. Sci., 2003, vol. 544, pp. 183–92CrossRefGoogle Scholar
  17. 17.
    EP 1199385A2: “Method of Colouring Titanium and Its Alloys through Anodic Oxidation,” European Patent Bulletin 2002/17, 24.04.2002Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2008

Authors and Affiliations

  1. 1.Department of Chemistry, Materials and Chemical EngineeringPolitecnico di MilanoMilanoItaly
  2. 2.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations