# Pseudoelasticity and Cyclic Stability in Co_{49}Ni_{21}Ga_{30} Shape-Memory Alloy Single Crystals at Ambient Temperature

- 275 Downloads
- 29 Citations

## Abstract

As-grown Co_{49}Ni_{21}Ga_{30} [001]- and [123]-oriented single crystals were subjected to cyclic compression loading at room temperature above the austenite finish temperature of 15 °C. Strain-controlled experiments were performed using both incremental strain steps and constant strain amplitudes. Cyclic deformation with a maximum strain amplitude of 2.5 pct resulted in rapid accumulation of irrecoverable strains in the [123]-oriented crystals. However, after a few cycles, the samples demonstrated cyclic stability with fully recoverable transformation. By contrast, the [001]-oriented crystals displayed excellent cyclic stability with hardly any change in stress-strain characteristics. *In-situ* optical microscopy and electron backscattered diffraction analysis were employed to clarify the events that take place at different stages of a typical loading-unloading history. The *in-situ* observations also revealed that the initiation and growth characteristics of stress-induced martensite (SIM) are heterogeneous on the microscopic scale in CoNiGa alloys. In addition, theoretical transformation and detwinning strains, and resolved shear stress factors (RSSFs), were calculated based on the energy minimization theory and are compared to the experimentally obtained orientation-dependent transformation stress and strain levels. It is shown that the selection of an appropriate orientation is one of the key criteria to optimize the pseudoelastic (PE) response and cyclic stability of CoNiGa alloys.

## Notes

### Acknowledgments

The present study was supported by Deutsche Forschungsgemeinschaft, United States Army Research Office, Contract No W911NF-06-1-0319, and the United States Civilian Research and Development Foundation, Grant No RUE1-2690-TO-05.

### References

- 1.E. Patoor, D.C. Lagoudas, P.B. Entchev, L.C. Brinson, X. Gao:
*Mech. Mater.*, 2006, vol. 38, pp. 391–29CrossRefGoogle Scholar - 2.Y. Liu, Z. Xie, J.V. Humbeeck:
*Mater. Sci. Eng. A*, 1999, vols. 273–275, pp. 673–78Google Scholar - 3.G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, M. Wagner:
*Mater. Sci. Eng. A*, 2004, vol. 378, pp. 24–33CrossRefGoogle Scholar - 4.S. Miyazaki, T. Imai, Y. Igo, K. Otsuka:
*Metall. Trans. A*, 1986, vol. 17A, pp. 115–20Google Scholar - 5.K. Gall, H.J. Maier:
*Acta Mater.*, 2002, vol. 50, pp. 4643–57CrossRefGoogle Scholar - 6.K. Gall, H. Sehitoglu, Y.I. Chumlyakov, I. Kireeva:
*Scripta Mater.*, 1999, vol. 40, pp. 7–12Google Scholar - 7.H. Sehitoglu, R. Anderson, I. Karaman, K. Gall, Y.I. Chumlyakov:
*Mater. Sci. Eng. A*, 2001, vol. 314, pp. 67–74CrossRefGoogle Scholar - 8.A. Yawny, M. Sade, G. Eggeler:
*Int. J. Mater. Res. Adv. Technol.*, 2005, vol. 96, pp. 608–18Google Scholar - 9.S. Nemat-Nasser, W. Guo:
*Mech. Mater.*, 2006, vol. 38, pp. 463–74CrossRefGoogle Scholar - 10.B. Kockar, I. Karaman, A. Kulakarni, Y. Chumlyakov, I.V. Kireeva:
*J. Nucl. Mater.*, 2007, vol. 361, pp. 298–305CrossRefGoogle Scholar - 11.J. Dadda, H.J. Maier, I. Karaman, H.E. Karaca, Y.I. Chumlyakov:
*Scripta Mater.*, 2006, vol. 55, pp. 663–66CrossRefGoogle Scholar - 12.K. Oikawa, T. Ota, F. Gejima, T. Ohmori, R. Kainuma, K. Ishida:
*Mater. Trans. (JIM)*, 2001, vol. 42, pp. 2472–75CrossRefGoogle Scholar - 13.C.M. Craciunescu, Y. Kishi, M. De Graef, T.A. Lograsso, M. Wuttig:
*Smart Struct. Mater. SPIE*, 2002, vol. 4699, pp. 235–44Google Scholar - 14.M. Sato, T. Okazaki, Y. Furuya, M. Wuttig:
*Mater. Trans. (JIM)*, 2003, vol. 44, pp. 372–76CrossRefGoogle Scholar - 15.K. Ullakko, J.K. Huang, C. Kantner, R.C. O´Handley, V.V. Kokorin:
*Appl. Phys. Lett.*, 1996, vol. 69, pp. 1966–68CrossRefGoogle Scholar - 16.I. Karaman, H.E. Karaca, B. Basaran, D.C. Lagoudas, Y.I. Chumlyakov, H.J. Maier:
*Scripta Mater.*, 2006, vol. 55, pp. 403–06CrossRefGoogle Scholar - 17.R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida:
*Nat. Lett.*, 2006, vol. 439, pp. 957–60CrossRefGoogle Scholar - 18.M.A. Marioni, R.C. O´Handley, S.M. Allen:
*Appl. Phys. Lett.*, 2003, vol. 83, pp. 3966–68CrossRefGoogle Scholar - 19.P. Müllner, V.A. Chernenko, G. Kostorz:
*J. Mag. Mag. Mater.*, 2003, vol. 267, pp. 325–34CrossRefGoogle Scholar - 20.J. Dadda, D. Canadinc, H.J. Maier, I. Karaman, H.E. Karaca, Y.I. Chumlyakov:
*Phil. Mag. A*, 2007, vol. 87, pp. 2313–22CrossRefGoogle Scholar - 21.Y.X. Li, H.Y. Liu, F.B. Meng, L.Q. Yan, G.D. Liu, X.F. Dai, M. Zhang, Z.H. Liu, J.L. Chen, G.H. Wu:
*Appl. Phys. Lett.*, 2004, vol. 84, pp. 3594–96CrossRefGoogle Scholar - 22.P.J. Brown, K. Ishida, R. Kainuma, T. Kanomata, K.U. Neumann, K. Oikawa, B. Ouladdiaf, K.R.A. Ziebeck:
*J. Phys. Condens. Mater.*, 2005, vol. 17, pp. 1301–10CrossRefGoogle Scholar - 23.V.A. Chernenko, J. Pons, E. Cesari, I.K. Zasimchuk:
*Scripta Mater.*, 2004, vol. 50, pp. 225–29CrossRefGoogle Scholar - 24.V.A. Chernenko, J. Pons, E. Cesari, A.E. Perekos:
*Mater. Sci. Eng. A*, 2004, vol. 378, pp. 357–60CrossRefGoogle Scholar - 25.Y.I. Chumlyakov, I.V. Kireeva, I. Karaman, E.Y. Panchenko, E.G. Zakharova, A.V. Tverskov, A.V. Ovsyannikov, K.M. Nazarov, V.A. Kirillov:
*Russ. Phys. J.*, 2004, vol. 47, pp. 893–911Google Scholar - 26.R.F. Hamilton, H. Sehitoglu, Y. Chumlyakov, H.J. Maier:
*Acta Mater.*, 2004, vol. 52, pp. 3383–3402CrossRefGoogle Scholar - 27.I. Mueller, H. Xu:
*Acta Metall. Mater.*, 1991, vol. 39, pp. 263–71CrossRefGoogle Scholar - 28.V.V. Kokorin, L.P. Gun’ko, O.M. Shevchenko:
*Phys. Met. Metall.*, 1992, vol. 74, pp. 502–05Google Scholar - 29.X.Q. Zhao:
*Mater. Sci. Forum.*, 2000, vols. 327–328, pp. 339–42CrossRefGoogle Scholar - 30.Y. Liu, I. Houver, H. Xiang, L. Bataillard, S. Miyazaki:
*Metall. Mater. Trans. A*, 1998, vol. 30A, pp. 1275–82Google Scholar - 31.D. Canadinc, J. Dadda, H.J. Maier, I. Karaman, H.E. Karaca, Y.I. Chumlyakov:
*Smart Mater. Struct.*, 2007, vol. 16, pp. 1006–15CrossRefGoogle Scholar - 32.R. Abeyaratne, J.K. Knowles:
*J. Mech. Phys. Solids*, 1993, vol. 41, pp. 541–71CrossRefGoogle Scholar - 33.D.Y. Cong, Y.D. Zhang, Y.D. Wang, M. Humber, X. Zhao, T. Watanabe, L. Zuo, C. Esling:
*Acta Mater.*, 2007, vol. 55, pp. 4731–40CrossRefGoogle Scholar - 34.J.M. Ball, R.D. James:
*Arch. Rat. Mech. Anal.*, 1987, vol. 100, pp. 13–52CrossRefGoogle Scholar - 35.K. Bhattacharya:
*Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effects*, 1st ed., Oxford University Press, New York, NY, 2003, pp. 29–141Google Scholar - 36.R.D. James, K.F. Hane:
*Acta Mater.*, 2000, vol. 48, pp. 197–222CrossRefGoogle Scholar - 37.H. Sehitoglu, I. Karaman, R. Anderson, X. Zhang, K. Gall, H.J. Maier, Y.I. Chumlyakov:
*Acta Mater.*, 2000, vol. 48, pp. 3311–26CrossRefGoogle Scholar - 38.X.Y. Zhang, L.C. Brinson, Q.P. Sun:
*Smart Mater. Struct.*, 2000, vol. 9, pp. 571–81CrossRefGoogle Scholar - 39.J.A. Shaw, S. Kyriakides:
*J. Mech. Phys. Solid.*, 1995, vol. 43, pp. 1243–81CrossRefGoogle Scholar - 40.S. Chakravorty, C.M. Wayman:
*Metall. Trans. A*, 1976, vol. 7, pp. 569–82CrossRefGoogle Scholar - 41.H.E. Karaca, I. Karaman, Y.I. Chumlyakov, D.C. Lagoudas, X. Zhang:
*Scripta Mater.*, 2004, vol. 51, pp. 261–66CrossRefGoogle Scholar - 42.A. Vainchtein:
*Int. J. Solids Struct.*, 2002, vol. 39, pp. 3387–3408CrossRefGoogle Scholar