Pseudoelasticity and Cyclic Stability in Co49Ni21Ga30 Shape-Memory Alloy Single Crystals at Ambient Temperature

  • J. Dadda
  • H.J. Maier
  • D. Niklasch
  • I. Karaman
  • H.E. Karaca
  • Y.I. Chumlyakov
Article

Abstract

As-grown Co49Ni21Ga30 [001]- and [123]-oriented single crystals were subjected to cyclic compression loading at room temperature above the austenite finish temperature of 15 °C. Strain-controlled experiments were performed using both incremental strain steps and constant strain amplitudes. Cyclic deformation with a maximum strain amplitude of 2.5 pct resulted in rapid accumulation of irrecoverable strains in the [123]-oriented crystals. However, after a few cycles, the samples demonstrated cyclic stability with fully recoverable transformation. By contrast, the [001]-oriented crystals displayed excellent cyclic stability with hardly any change in stress-strain characteristics. In-situ optical microscopy and electron backscattered diffraction analysis were employed to clarify the events that take place at different stages of a typical loading-unloading history. The in-situ observations also revealed that the initiation and growth characteristics of stress-induced martensite (SIM) are heterogeneous on the microscopic scale in CoNiGa alloys. In addition, theoretical transformation and detwinning strains, and resolved shear stress factors (RSSFs), were calculated based on the energy minimization theory and are compared to the experimentally obtained orientation-dependent transformation stress and strain levels. It is shown that the selection of an appropriate orientation is one of the key criteria to optimize the pseudoelastic (PE) response and cyclic stability of CoNiGa alloys.

Notes

Acknowledgments

The present study was supported by Deutsche Forschungsgemeinschaft, United States Army Research Office, Contract No W911NF-06-1-0319, and the United States Civilian Research and Development Foundation, Grant No RUE1-2690-TO-05.

References

  1. 1.
    E. Patoor, D.C. Lagoudas, P.B. Entchev, L.C. Brinson, X. Gao: Mech. Mater., 2006, vol. 38, pp. 391–29CrossRefGoogle Scholar
  2. 2.
    Y. Liu, Z. Xie, J.V. Humbeeck: Mater. Sci. Eng. A, 1999, vols. 273–275, pp. 673–78Google Scholar
  3. 3.
    G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, M. Wagner: Mater. Sci. Eng. A, 2004, vol. 378, pp. 24–33CrossRefGoogle Scholar
  4. 4.
    S. Miyazaki, T. Imai, Y. Igo, K. Otsuka: Metall. Trans. A, 1986, vol. 17A, pp. 115–20Google Scholar
  5. 5.
    K. Gall, H.J. Maier: Acta Mater., 2002, vol. 50, pp. 4643–57CrossRefGoogle Scholar
  6. 6.
    K. Gall, H. Sehitoglu, Y.I. Chumlyakov, I. Kireeva: Scripta Mater., 1999, vol. 40, pp. 7–12Google Scholar
  7. 7.
    H. Sehitoglu, R. Anderson, I. Karaman, K. Gall, Y.I. Chumlyakov: Mater. Sci. Eng. A, 2001, vol. 314, pp. 67–74CrossRefGoogle Scholar
  8. 8.
    A. Yawny, M. Sade, G. Eggeler: Int. J. Mater. Res. Adv. Technol., 2005, vol. 96, pp. 608–18Google Scholar
  9. 9.
    S. Nemat-Nasser, W. Guo: Mech. Mater., 2006, vol. 38, pp. 463–74CrossRefGoogle Scholar
  10. 10.
    B. Kockar, I. Karaman, A. Kulakarni, Y. Chumlyakov, I.V. Kireeva: J. Nucl. Mater., 2007, vol. 361, pp. 298–305CrossRefGoogle Scholar
  11. 11.
    J. Dadda, H.J. Maier, I. Karaman, H.E. Karaca, Y.I. Chumlyakov: Scripta Mater., 2006, vol. 55, pp. 663–66CrossRefGoogle Scholar
  12. 12.
    K. Oikawa, T. Ota, F. Gejima, T. Ohmori, R. Kainuma, K. Ishida: Mater. Trans. (JIM), 2001, vol. 42, pp. 2472–75CrossRefGoogle Scholar
  13. 13.
    C.M. Craciunescu, Y. Kishi, M. De Graef, T.A. Lograsso, M. Wuttig: Smart Struct. Mater. SPIE, 2002, vol. 4699, pp. 235–44Google Scholar
  14. 14.
    M. Sato, T. Okazaki, Y. Furuya, M. Wuttig: Mater. Trans. (JIM), 2003, vol. 44, pp. 372–76CrossRefGoogle Scholar
  15. 15.
    K. Ullakko, J.K. Huang, C. Kantner, R.C. O´Handley, V.V. Kokorin: Appl. Phys. Lett., 1996, vol. 69, pp. 1966–68CrossRefGoogle Scholar
  16. 16.
    I. Karaman, H.E. Karaca, B. Basaran, D.C. Lagoudas, Y.I. Chumlyakov, H.J. Maier: Scripta Mater., 2006, vol. 55, pp. 403–06CrossRefGoogle Scholar
  17. 17.
    R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida: Nat. Lett., 2006, vol. 439, pp. 957–60CrossRefGoogle Scholar
  18. 18.
    M.A. Marioni, R.C. O´Handley, S.M. Allen: Appl. Phys. Lett., 2003, vol. 83, pp. 3966–68CrossRefGoogle Scholar
  19. 19.
    P. Müllner, V.A. Chernenko, G. Kostorz: J. Mag. Mag. Mater., 2003, vol. 267, pp. 325–34CrossRefGoogle Scholar
  20. 20.
    J. Dadda, D. Canadinc, H.J. Maier, I. Karaman, H.E. Karaca, Y.I. Chumlyakov: Phil. Mag. A, 2007, vol. 87, pp. 2313–22CrossRefGoogle Scholar
  21. 21.
    Y.X. Li, H.Y. Liu, F.B. Meng, L.Q. Yan, G.D. Liu, X.F. Dai, M. Zhang, Z.H. Liu, J.L. Chen, G.H. Wu: Appl. Phys. Lett., 2004, vol. 84, pp. 3594–96CrossRefGoogle Scholar
  22. 22.
    P.J. Brown, K. Ishida, R. Kainuma, T. Kanomata, K.U. Neumann, K. Oikawa, B. Ouladdiaf, K.R.A. Ziebeck: J. Phys. Condens. Mater., 2005, vol. 17, pp. 1301–10CrossRefGoogle Scholar
  23. 23.
    V.A. Chernenko, J. Pons, E. Cesari, I.K. Zasimchuk: Scripta Mater., 2004, vol. 50, pp. 225–29CrossRefGoogle Scholar
  24. 24.
    V.A. Chernenko, J. Pons, E. Cesari, A.E. Perekos: Mater. Sci. Eng. A, 2004, vol. 378, pp. 357–60CrossRefGoogle Scholar
  25. 25.
    Y.I. Chumlyakov, I.V. Kireeva, I. Karaman, E.Y. Panchenko, E.G. Zakharova, A.V. Tverskov, A.V. Ovsyannikov, K.M. Nazarov, V.A. Kirillov: Russ. Phys. J., 2004, vol. 47, pp. 893–911Google Scholar
  26. 26.
    R.F. Hamilton, H. Sehitoglu, Y. Chumlyakov, H.J. Maier: Acta Mater., 2004, vol. 52, pp. 3383–3402CrossRefGoogle Scholar
  27. 27.
    I. Mueller, H. Xu: Acta Metall. Mater., 1991, vol. 39, pp. 263–71CrossRefGoogle Scholar
  28. 28.
    V.V. Kokorin, L.P. Gun’ko, O.M. Shevchenko: Phys. Met. Metall., 1992, vol. 74, pp. 502–05Google Scholar
  29. 29.
    X.Q. Zhao: Mater. Sci. Forum., 2000, vols. 327–328, pp. 339–42CrossRefGoogle Scholar
  30. 30.
    Y. Liu, I. Houver, H. Xiang, L. Bataillard, S. Miyazaki: Metall. Mater. Trans. A, 1998, vol. 30A, pp. 1275–82Google Scholar
  31. 31.
    D. Canadinc, J. Dadda, H.J. Maier, I. Karaman, H.E. Karaca, Y.I. Chumlyakov: Smart Mater. Struct., 2007, vol. 16, pp. 1006–15CrossRefGoogle Scholar
  32. 32.
    R. Abeyaratne, J.K. Knowles: J. Mech. Phys. Solids, 1993, vol. 41, pp. 541–71CrossRefGoogle Scholar
  33. 33.
    D.Y. Cong, Y.D. Zhang, Y.D. Wang, M. Humber, X. Zhao, T. Watanabe, L. Zuo, C. Esling: Acta Mater., 2007, vol. 55, pp. 4731–40CrossRefGoogle Scholar
  34. 34.
    J.M. Ball, R.D. James: Arch. Rat. Mech. Anal., 1987, vol. 100, pp. 13–52CrossRefGoogle Scholar
  35. 35.
    K. Bhattacharya: Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effects, 1st ed., Oxford University Press, New York, NY, 2003, pp. 29–141Google Scholar
  36. 36.
    R.D. James, K.F. Hane: Acta Mater., 2000, vol. 48, pp. 197–222CrossRefGoogle Scholar
  37. 37.
    H. Sehitoglu, I. Karaman, R. Anderson, X. Zhang, K. Gall, H.J. Maier, Y.I. Chumlyakov: Acta Mater., 2000, vol. 48, pp. 3311–26CrossRefGoogle Scholar
  38. 38.
    X.Y. Zhang, L.C. Brinson, Q.P. Sun: Smart Mater. Struct., 2000, vol. 9, pp. 571–81CrossRefGoogle Scholar
  39. 39.
    J.A. Shaw, S. Kyriakides: J. Mech. Phys. Solid., 1995, vol. 43, pp. 1243–81CrossRefGoogle Scholar
  40. 40.
    S. Chakravorty, C.M. Wayman: Metall. Trans. A, 1976, vol. 7, pp. 569–82CrossRefGoogle Scholar
  41. 41.
    H.E. Karaca, I. Karaman, Y.I. Chumlyakov, D.C. Lagoudas, X. Zhang: Scripta Mater., 2004, vol. 51, pp. 261–66CrossRefGoogle Scholar
  42. 42.
    A. Vainchtein: Int. J. Solids Struct., 2002, vol. 39, pp. 3387–3408CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2008

Authors and Affiliations

  • J. Dadda
    • 1
  • H.J. Maier
    • 1
  • D. Niklasch
    • 1
  • I. Karaman
    • 2
  • H.E. Karaca
    • 2
  • Y.I. Chumlyakov
    • 3
  1. 1.University of Paderborn, Lehrstuhl für Werkstoffkunde (Materials Science)PaderbornGermany
  2. 2.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA
  3. 3.Siberian Physical Technical InstituteTomskRussia

Personalised recommendations