Metallurgical and Materials Transactions A

, Volume 39, Issue 6, pp 1359–1370 | Cite as

Hot Deformation and Recrystallization of Austenitic Stainless Steel: Part I. Dynamic Recrystallization

Article

Abstract

The hot deformation behavior of a 304 austenitic stainless steel was investigated to characterize the evolution of the dynamically recrystallized structure as a starting point for studies of the postdeformation recrystallization behavior. The effect of different deformation parameters such as strain, strain rate, and temperature were investigated. The flow curves showed typical signs of dynamic recrystallization (DRX) over a wide range of temperatures and strain rates (i.e., different Zener–Hollomon (Z) values). However, under very high or very low Z values, the flow curves’ shapes changed toward those of the dynamic recovery and multiple peaks, respectively. The results showed that while DRX starts at a strain as low as 60 pct of the peak strain, a fully DRX microstructure needs a high strain of almost 4.5 times the initiation strain. The DRX average grain size showed power-law functions with both the Zener–Hollomon parameter and the peak stress, although power-law breakdown was observed at high Z values.

References

  1. 1.
    M.J. Luton, C.M. Sellars: Acta Metall., 1969, vol. 17, pp. 1033–42CrossRefGoogle Scholar
  2. 2.
    B. Derby, M.F. Ashby: Scripta Metall., 1987, vol. 21, pp. 879–84CrossRefGoogle Scholar
  3. 3.
    J.J. Jonas: Thermec-88, Int. Conf. on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals, I. Tamura, ed., Iron and Steel Institute of Japan, Tokyo, Japan, 1988, pp. 59–69Google Scholar
  4. 4.
    T. Sakai, A. Belyakov, and H. Miura: 1st Joint Int. Conf. on Recrystallization and Grain Growth, G. Gottstein and D.A. Molodov, eds., Springer-Verlag, New York, NY, 2001, pp. 669–82Google Scholar
  5. 5.
    A. Dehghan-Manshadi, H. Beladi, M.R. Barnett, P.D. Hodgson: Mater. Forum, 2004, vols. 467–470, pp. 1163–68CrossRefGoogle Scholar
  6. 6.
    C.M. Sellars: in Hot Working and Forming Process, C.M. Sellars, C.H.J. Davies, eds., The Metals Society, London, 1979, pp. 3–15Google Scholar
  7. 7.
    T. Maki, S. Okaguchi, and I. Tamura: 7th Int. Conf. on the Strength of Metals and Alloys (ICSMA 7), H.J. McQueen, ed., Pergamon, Oxford, 1985, pp. 923–28Google Scholar
  8. 8.
    M. Ueki, S. Horie, T. Nakamura: Mater. Sci. Technol., 1987, vol. 3, pp. 329–37Google Scholar
  9. 9.
    T. Sakai, J.J. Jonas: Acta Metall., 1984, vol. 32, pp. 189–209CrossRefGoogle Scholar
  10. 10.
    A. Belyakov, H. Miura, T. Sakai: Scripta Mater., 2000, vol. 43, pp. 21–26CrossRefGoogle Scholar
  11. 11.
    D. Ponge, G. Gottstein: Acta Mater., 1998, vol. 46, pp. 69–80CrossRefGoogle Scholar
  12. 12.
    F.J. Humphreys, M. Hatherly: Recrystallization and Related Annealing Phenomena, 1st ed., Pergamon, Oxford, United Kingdom, 1996, pp. 363–92Google Scholar
  13. 13.
    P.D. Hodgson: Ph.D. Thesis, University of Queensland, Brisbane, Australia, 1993, pp. 25–30Google Scholar
  14. 14.
    R.L. Higginson, C.M. Sellars: Worked Examples in Quantitative Metallography, Maney Publishing, London, 2003, pp. 9–30Google Scholar
  15. 15.
    W. Roberts, H. Benden, B. Ahlbom: Met. Sci., 1979, vol. 13, pp. 195–203CrossRefGoogle Scholar
  16. 16.
    H.E. Exner: Int. Metall. Rev., 1972, vol. 17, pp. 25–42Google Scholar
  17. 17.
    H. Mecking, U.F. Kocks: Acta Metall., 1981, vol. 29, pp. 1865–75CrossRefGoogle Scholar
  18. 18.
    N.D. Ryan, H.J. McQueen: Can. Metall. Q., 1990, vol. 29, pp. 147–62Google Scholar
  19. 19.
    H.J. McQueen, N.D. Ryan: Mater. Sci. Eng. A, 2002, vol. 322, pp. 43–63CrossRefGoogle Scholar
  20. 20.
    E.I. Poliak, J.J. Jonas: Acta Mater., 1996, vol. 44, pp. 127–36CrossRefGoogle Scholar
  21. 21.
    C.M. Sellars, W.J. McTegart: Acta Metall., 1966, vol. 14, pp. 1136–38CrossRefGoogle Scholar
  22. 22.
    A. Belyakov, H. Miura, T. Sakai: Mater. Sci. Eng. A, 1998, vol. 255, pp. 139–47CrossRefGoogle Scholar
  23. 23.
    S.I. Kim, Y.C. Yoo: Mater. Sci. Eng. A, 2001, vol. 311, pp. 108–13CrossRefGoogle Scholar
  24. 24.
    C.M. Sellaes: in Hot Working and Forming Process, C.M. Sellaes, C.H.J. Davies, eds., The Metal Society, London, England, 1979, pp. 3–15Google Scholar
  25. 25.
    A. Manonukul, F.P.E. Dunne: Acta Mater., 1999, vol. 47, pp. 4339–54CrossRefGoogle Scholar
  26. 26.
    C.M. Sellars: Czech. J. Phys. B, 1985, vol. 35, pp. 239–48CrossRefGoogle Scholar
  27. 27.
    F.A. Mohamed, T.G. Langdon: Acta Metall., 1974, vol. 22, pp. 779–88CrossRefGoogle Scholar
  28. 28.
    M.S. Soliman: J. Mater. Sci., 1987, vol. 22, pp. 3529–32CrossRefGoogle Scholar
  29. 29.
    P.O. Santacreu, F. Cayer-Barrioz and C. Pedarre: Thermec’97, Int. Conf. on Thermomechanical Processing of Steels & Other Materials, T. Chandra and T. Sakai, eds., TMS, Warrendale, PA, 1997, pp. 355–61Google Scholar
  30. 30.
    J.P. Sah, C.J. Richardson, C.M. Sellars: Met. Sci., 1974, vol. 8, pp. 325–31Google Scholar
  31. 31.
    J.H. Beynon, C.M. Sellars: ISIJ Int., 1992, vol. 32, pp. 359–67CrossRefGoogle Scholar
  32. 32.
    I. Salvatori, T. Inoue, K. Nagai: ISIJ Int., 2002, vol. 42, pp. 744–50CrossRefGoogle Scholar
  33. 33.
    W. Roberts, B. Ahlblom: Acta Metall., 1978, vol. 26, pp. 801–13CrossRefGoogle Scholar
  34. 34.
    T. Maki, K. Akasaka, K. Okuno, I. Tamura: Trans. ISIJ, 1982, vol. 22, pp. 253–61Google Scholar
  35. 35.
    A. Dehghan-Manshadi, P.D. Hodgson: ISIJ Int., 2007, vol. 47, pp. 1799–803CrossRefGoogle Scholar
  36. 36.
    H. Miura, T. Sakai, S. Andiarwanto, J.J. Jonas: Philos. Mag., 2005, vol. 85, pp. 2653–59CrossRefGoogle Scholar
  37. 37.
    L.M. Dougherty, I.M. Robertson, J.S. Vetrano: Acta Mater., 2003, vol. 51, pp. 4367–78CrossRefGoogle Scholar
  38. 38.
    M.G. Zelin, M.R. Dunlap, R. Rosen, A.K. Mukherjee: J. Appl. Phys., 1993, vol. 74, pp. 4972–82CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2008

Authors and Affiliations

  • A. Dehghan-Manshadi
    • 1
    • 2
  • M.R. Barnett
    • 1
  • P.D. Hodgson
    • 1
  1. 1.Centre for Materials and Fibre InnovationDeakin UniversityGeelongAustralia
  2. 2.Faculty of EngineeringUniversity of WollongongWollongongAustralia

Personalised recommendations