Advertisement

Metallurgical and Materials Transactions A

, Volume 39, Issue 5, pp 1196–1205 | Cite as

Microstructure and Properties of Laser-Deposited Ti6Al4V Metal Matrix Composites Using Ni-Coated Powder

  • B. ZhengEmail author
  • J.E. Smugeresky
  • Y. Zhou
  • D. Baker
  • E.J. Lavernia
Article

Abstract

As a layer additive rapid manufacturing process, laser engineered net shaping (LENS) can fabricate three-dimensional components directly from a computer-aided design (CAD) model. In this work, the LENS process was employed to fabricate Ti6Al4V metal matrix composites using powder mixtures of gas-atomized Ti6Al4V powder and varying volume fractions of Ni nanocoated TiC particles. The as-fabricated microstructures were studied using scanning electron microscopy (SEM), X-ray energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), differential thermal analyzer (DTA), and transmission electron microscopy (TEM) techniques. The interfaces between the metal matrix and ceramic particles were examined. The presence of intermetallic phases and resolidified TiC particles was rationalized on the basis of the thermal field during deposition. The influence of LENS parameters on the microstructure evolution and mechanical behavior of the metal matrix composites (MMCs) was also discussed.

Keywords

Ceramic Particle Ti6Al4V Alloy Compressive Yield Strength Ti6Al4V Powder Melt Pool Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported under NASA Marshall Contract No. NNM06AB11C. We acknowledge the assistance of Mr. Ken Cooper, Aries Work Package Manager, and Mr. Curtis Manning, Rapid Prototyping Manager, of the NASA Net Shape/Rapid Prototype Manufacturing Center for their direction and support of this work. Work at Sandia National Laboratories is supported by the U.S. Department of Energy (Contract No. DE-AC04-94AL85000).

References

  1. 1.
    S. Rawal: JOM, 2001, vol. 53 (4), pp. 14–17CrossRefGoogle Scholar
  2. 2.
    T.W. Clyne, P.J. Withers: An Introduction to Metal Matrix Composites, Cambridge University Press, New York, NY, 1993, pp. 166–71Google Scholar
  3. 3.
    A.B. Pandey, B.S. Majumdar, D.B. Miracle: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 921–36Google Scholar
  4. 4.
    S. Suresh, A. Mortensen, A. Needleman: Fundamentals of Metal-Matrix Composites, Butterworth-Heinemann, Boston, MA, 1993, pp. 233–50Google Scholar
  5. 5.
    T.P.D. Rajan, R.M. Pillai, B.C. Pai: J. Mater. Sci., 1998, vol. 33, pp. 3491–503CrossRefGoogle Scholar
  6. 6.
    P. Yih, D.D.L. Chung: J. Mater. Sci., 1997, vol. 32, pp. 2873–94CrossRefGoogle Scholar
  7. 7.
    J. Carmai, K.H. Baik, F.P.E. Dunne: Acta Mater., 2002, vol. 50, pp. 4981–93CrossRefGoogle Scholar
  8. 8.
    S. Qin, G. Zhang: Mater. Sci. Eng. A, 2000, vol. 279, pp. 231–36CrossRefGoogle Scholar
  9. 9.
    J. He, Y. Zhou, D. Baker, W. Harrigan, and E.J. Lavernia: MS&T 2003, Chicago, IL, Nov. 9–12, 2003, p. 13Google Scholar
  10. 10.
    J. Ye, B.Q. Han, J.M. Schoenung: Philos. Mag. Lett., 2006, vol. 86 (11), pp. 721–32CrossRefGoogle Scholar
  11. 11.
    Karl U. Kainer: Metal Matrix Composites, Custom-Made Materials for Automotive and Aerospace Engineering, Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, Germany, 2006, pp. 266–67Google Scholar
  12. 12.
    D.J. Lloyd: Int. Mater. Rev., 1994, vol. 39 (1), pp. 1–23Google Scholar
  13. 13.
    W. Liu, J.N. DuPont: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1133–40Google Scholar
  14. 14.
    R. Banerjee, P.C. Collins, A. Genç, H.L. Fraser: Mater. Sci. Eng. A, 2003, vol. 358 (1–2), pp. 343–49Google Scholar
  15. 15.
    C.L. Atwood, M.L. Griffith, L.D. Harwell, D.L. Greene, D.E. Reckaway, M.T. Ensz, D.M. Keicher, M.E. Schlienger, J.A. Romero, M.S. Oliver, F.P. Jeantette, and J.E. Smugeresky: “Laser Spray Fabrication for Net-Shape Rapid Product Realization LDRD,” Sandia Report SAND99-0739, Sandia National Laboratory, Albuquerque, NM, 1999, pp. 1–30Google Scholar
  16. 16.
    B. Zheng, Y. Lin, Y. Zhou, J.E. Smugeresky, E.J. Lavernia: TMS Lett., 2005, vol. 4, pp. 113–14Google Scholar
  17. 17.
    W. Hofmeister, M. Griffith, M. Ensz, J. Smugeresky: JOM, 2001, vol. 53 (9), pp. 30–34CrossRefGoogle Scholar
  18. 18.
    B. Zheng, J. E. Smugeresky, Y. Zhou, and E.J. Lavernia: Processing of PowderMet’06, San Diego, CA, June 18–21, 2006Google Scholar
  19. 19.
    J.E. Smugeresky, B. Zheng, Y. Zhou, and E.J. Lavernia: TMS’06, San Antonio, TX, Mar. 12–16, 2006Google Scholar
  20. 20.
    Dieter M. Herlach: Mater. Sci. Eng., R12, 1994, vols. 4–5 (08), pp. 177–272CrossRefGoogle Scholar
  21. 21.
    E.J. Lavernia, J.D. Ayers, T.S. Srivatsan: Int. Mater. Rev., 1992, vol. 37 (1), pp. 1–44Google Scholar
  22. 22.
    X. Wu, J. Liang, J. Mei: Mater. Des., 2004, vol. 25, pp. 137–44Google Scholar
  23. 23.
    J. Tiley, T. Searles, E. Lee, S. Kar, R. Banerjee, J.C. Russ, and H.L. Fraser: Mater. Sci. Eng., A, 2004, vol. 372 (1–2), pp. 191–98Google Scholar
  24. 24.
    Weiping Liu, J.N. DuPont: Scripta Mater., 2003, vol. 48 (9), pp. 1337–42CrossRefGoogle Scholar
  25. 25.
    C.M. Ward-Close, R. Minor, P.J. Doorbar: Intermetallics, 1996, vol. 4 (3), pp. 217–29CrossRefGoogle Scholar
  26. 26.
    ASM Handbook, vol. 3, Alloy Phase Diagrams, ASM INTERNATIONAL, Materials Park, OH, 1992, pp. 2–114Google Scholar
  27. 27.
  28. 28.
    Thomas H. Courtney: Mechanical Behavior of Materials, McGraw-Hill, New York, NY, 2000, pp. 182–83Google Scholar
  29. 29.
    W.H. Jiang, R. Kovacevic: J. Mater. Process. Technol., 2007, vol. 186 (1–3), pp. 331–38CrossRefGoogle Scholar
  30. 30.
    John F. Ready: Industrial Applications of Lasers, Academic Press, New York, NY, 1997, pp. 11–14Google Scholar
  31. 31.
    LIA Handbook of Laser Materials Processing, John F. Ready, ed., Laser Institute of America, Magnolia Publishing, Orlando, FL, 2001, pp. 182–83Google Scholar
  32. 32.
    R.T.C. Choo, J. Szekely: Weld. J., 1994, vol. 73, pp. 25–31Google Scholar
  33. 33.
    H.O. Pierson: Handbook of Refractory Carbides and Nitrides, 1st ed., William Andrew Publishing, Noyes, 1996, pp. 55–74Google Scholar
  34. 34.
    F.F. Lange and K.A.D. Lambe: Phil. Mag., 1968, pp. 129–36Google Scholar
  35. 35.
    S. Moyne, C. Poilane, K. Kitamura, S. Miyazaki, P. Delobelle, C. Lexcellent: Mater. Sci. Eng. A, 1999, vols. 273–275, pp. 727–37Google Scholar
  36. 36.
    V.É. Gyunter, V.I. Chernyshev, T.L. Chekalkin: J. Appl. Mech. Tech. Phys., 2000, vol. 41 (4), pp. 740–44CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2008

Authors and Affiliations

  • B. Zheng
    • 1
    Email author
  • J.E. Smugeresky
    • 2
  • Y. Zhou
    • 1
  • D. Baker
    • 3
  • E.J. Lavernia
    • 1
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaDavisUSA
  2. 2.Sandia National LaboratoriesLivermoreUSA
  3. 3.Advanced Powder Solutions, IncHoustonUSA

Personalised recommendations