Metallurgical and Materials Transactions A

, Volume 39, Issue 5, pp 1014–1025 | Cite as

Mechanisms of Topologically Close-Packed Phase Suppression in an Experimental Ruthenium-Bearing Single-Crystal Nickel-Base Superalloy at 1100 °C



Ruthenium (Ru) suppresses the precipitation of deleterious topologically close-packed (TCP) phases in high refractory content single-crystal Ni-base superalloys. The effectiveness of Ru as a TCP suppressant appears to be the net effect of its limited solubility in the TCP phase, a lower density of structural growth ledges for atomic attachment at the TCP/matrix interface, and destabilization of the γ′ phase at elevated temperatures. These characteristics combine to limit the growth rates of precipitates and decrease the driving force for TCP precipitation, which has the secondary effect of reducing the TCP nucleation rate. The reduction in γ′ volume fraction upon the addition of Ru is particularly potent due to the sensitivity of the rhenium (Re) content in the γ matrix to changes in the γ′ volume fraction.


  1. 1.
    G.L. Erickson: Superalloys 1996, TMS, Warrendale, PA, 1996, pp. 35–44Google Scholar
  2. 2.
    W.S. Walston, K.S. O’Hara, E.W. Ross, T.M. Pollock, and W.H. Murphy: Superalloys 1996, TMS, Warrendale, PA, 1996, pp. 27–34Google Scholar
  3. 3.
    A.F. Giamei and D.L. Anton: Metall. Trans. A, 1985, vol. 16A, pp. 1997–2004Google Scholar
  4. 4.
    M.S.A. Karunaratne, D.C. Cox, P. Carter, and R.C. Reed: Superalloys 2000, TMS, Warrendale, PA, 2000, pp. 263–72Google Scholar
  5. 5.
    C.M. Neubauer, D. Mari, and D.C. Dunand: Scripta Metall. Mater., 1994, vol. 31(1), pp. 99–104CrossRefGoogle Scholar
  6. 6.
    H. Murakami, T. Honma, Y. Koizumi, and H. Harada: Superalloys 2000, TMS, Warrendale, PA, 2000, pp. 747–56Google Scholar
  7. 7.
    S. Tin and T.M. Pollock: Mater. Sci. Eng. A, 2003, vol. 348, pp. 111–21CrossRefGoogle Scholar
  8. 8.
    D.N. Duhl: Superalloys II, Wiley-Interscience, New York, NY, 1987, pp. 189–214Google Scholar
  9. 9.
    C.M.F. Rae, M.S.A. Karunaratne, C.J. Small, R.W. Broomfield, C.N. Jones, and R.C. Reed: Superalloys 2000, TMS, Warrendale, PA, 2000, pp. 767–76Google Scholar
  10. 10.
    K.S. O’Hara, W.S. Walston, E.W. Ross, and R. Darolia: U.S. Patent 5,482,789, 1996Google Scholar
  11. 11.
    P. Caron: Superalloys 2000, TMS, Warrendale, PA, 2000, pp. 747–56Google Scholar
  12. 12.
    S. Walston, A. Cetel, R. MacKay, K. O’Hara, D. Duhl, and R. Dreshfield: Superalloys 2004, TMS, Warrendale, PA, 2004, pp. 15–24Google Scholar
  13. 13.
    Y. Koizumi, T. Kobayashi, T. Yokokawa, Z. Jianxin, M. Osawa, H. Harada, Y. Aoki, and M. Arai: Superalloys 2004, TMS, Warrendale, PA, 2004, pp. 35–44Google Scholar
  14. 14.
    A.C. Yeh, C.M.F. Rae, and S. Tin: Superalloys 2004, TMS, Warrendale, PA, 2004, pp. 677–86Google Scholar
  15. 15.
    A. Sato, H. Harada, T. Yokokawa, T. Murakumo, Y. Koizumi, T. Kobayashi, and H. Imai: Scripta Mater., 2006, vol. 54(9), pp. 1679–84CrossRefGoogle Scholar
  16. 16.
    T. Yokokawa, M. Osawa, H. Murakami, T. Kobayashi, Y. Koizumi, T. Yamagata, and H. Harada: Scripta Mater., 2003, vol. 49, pp. 1041–46CrossRefGoogle Scholar
  17. 17.
    R.C. Reed, A.C. Yeh, S. Tin, S.S. Babu, and M.K. Miller: Scripta Mater., 2004, vol. 51, pp. 327–31CrossRefGoogle Scholar
  18. 18.
    P. Stadelmann: Centre Interdepartmental de Microscopie Elecronique, EPFL, Lausanne, SwitzerlandGoogle Scholar
  19. 19.
    Imaging Associates Ltd., Bicester, United KingdomGoogle Scholar
  20. 20.
    C.M.F. Rae, and R.C. Reed: Acta Mater., 2001, vol. 49, pp. 4113–25CrossRefGoogle Scholar
  21. 21.
    D.A. Porter, and K.E. Easterling: Phase Transformations in Metals and Alloys, Chapman & Hall, London, 1992.Google Scholar
  22. 22.
    R.A. Hobbs: Ph.D. Thesis, The University of Cambridge, Cambridge, United Kingdom, 2006Google Scholar
  23. 23.
    A. Volek, F. Pyczak, R.F. Singer, and H. Mughrabi: Scripta Mater., 2005, vol. 52(2), pp. 141–45CrossRefGoogle Scholar
  24. 24.
    K.E. Yoon, D. Isheim, R.D. Noebe, and D.N. Seidman: Interface Sci., 2001, vol. 9, pp. 249–55CrossRefGoogle Scholar
  25. 25.
    H.I. Aaronson: Decomposition of Austenite by Diffusional Processes, Interscience, New York, NY, 1962, p. 387Google Scholar
  26. 26.
    M. Ferrante and R.D. Doherty: Acta Metall., 1979, vol. 27, pp. 1603–14CrossRefGoogle Scholar
  27. 27.
    J.M. Howe, H.I. Aaronson, and R. Gronsky: Acta Metall., 1985, vol. 33(4), pp. 639–48CrossRefGoogle Scholar
  28. 28.
    J.M. Howe: Phil. Mag. A, 1987, vol. 56, pp. 31–61CrossRefGoogle Scholar
  29. 29.
    K.E. Rajab and R.D. Doherty: Acta Metall., 1989, vol. 37(10), pp. 2709–22CrossRefGoogle Scholar
  30. 30.
    W.A. Cassada, G.J. Shiflet, and E.A. Starke: Metall. Trans. A, 1991, vol. 22, pp. 287–97CrossRefGoogle Scholar
  31. 31.
    G. Spanos, R.A. Masumura, R.A. Vandermeer, and M. Enomoto: Acta Metall. Mater., 1994, vol. 42(12), pp. 4165–76CrossRefGoogle Scholar
  32. 32.
    C.S. Barrett: Structure of Metals: Crystallographic Methods, Principles and Data, McGraw-Hill, New York, NY, 1966Google Scholar
  33. 33.
    C.R. Hutchinson, X. Fan, S.J. Pennycook, and G.J. Shiflet: Acta Mater., 2001, vol. 49, pp. 2827–41CrossRefGoogle Scholar
  34. 34.
    R.A. Hobbs, M.S.A Karunaratne, S. Tin, R.C. Reed, and C.M.F. Rae: Mater. Sci. Eng. A, 2007, vols. 460–461, pp. 587–94Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2008

Authors and Affiliations

  1. 1.Rolls-Royce plcDerbyUnited Kingdom
  2. 2.Department of Materials Science & MetallurgyUniversity of CambridgeCambridgeUnited Kingdom
  3. 3.Department of Mechanical, Materials & Aerospace EngineeringIllinois Institute of TechnologyChicagoUnited States

Personalised recommendations