Advertisement

Metallurgical and Materials Transactions A

, Volume 39, Issue 5, pp 1054–1059 | Cite as

Effects of Ti Addition on the Liquid-Phase Separation of Cu71Cr29 Alloy during Rapid Cooling

  • Zhanbo SunEmail author
  • Juan Guo
  • Yan Li
  • Yaomin Zhu
  • Qian Li
  • Xiaoping Song
Article

Abstract

The effects of Ti addition on the liquid-phase separation of Cu71Cr29 alloy have been investigated. It is revealed that Ti addition can partly suppress the liquid-phase separation of the alloy melts, resulting in refining of Cr-rich particles formed after liquid-phase separation during rapid cooling. Nanoscaled Cr2Ti and Cu4Ti phases precipitate in the annealed Cu-Cr-Ti ribbons when Ti content attains 2.5 pct. The thermodynamic analyses indicate that the large positive mixing heat between Cu and Cr is reduced by the addition of Ti, leading to the liquid-phase separation occurring at a lower temperature and being driven by a smaller force. However, more Cr and Ti dissolve in Cu solid solution when Ti content is more than 3 pct, and as a result, the electrical resistivity of the ribbons is increased sharply.

Keywords

Electrical Resistivity Liquid Phase Separation Annealed Ribbon Critical Nucleus Radius Metastable Liquid Phase Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

Supported by the National Natural Science Foundation of China (50371066).

Reference

  1. 1.
    P.G. Slade: IEEE Trans. Comp. Packag. Mannf. Tech., 1994, vol. 17 (1), pp. 96–106CrossRefGoogle Scholar
  2. 2.
    Y. Wang, B. Ding: IEEE Trans. Comp. Packag. Mannf. Tech., 1999, vol. 22 (3), pp. 467–72CrossRefGoogle Scholar
  3. 3.
    B. Ding, Z. Yang, X. Wang: IEEE Trans., CPMT, 1996, vol. 19 (1), pp. 76–81Google Scholar
  4. 4.
    W.F. Rieder, M. Schussek, W. Glatzle: IEEE Trans. CHMT, 1989, vol. 12 (2), pp. 273–83Google Scholar
  5. 5.
    S. Spaic, M. Komac, A. Fetahagic: Mat. Sci. Tech., 1989, vol. 5 (11), pp. 1069–73Google Scholar
  6. 6.
    B.J. Ding: PhD dissertation, Xi’an Jiaotong University, 1990Google Scholar
  7. 7.
    Z.M. Yang: PhD dissertation, Xi’an Jiaotong University, 1996Google Scholar
  8. 8.
    S.X. Xiu, J.Y. Zou, J.J. He: High-Votage Electr. Equip., 2000, vol. 36 (3), pp. 40–42Google Scholar
  9. 9.
    F. Zhao, Z.M. Yang, B.J. Ding: Trans. Nonferrous Met. Soc. China, 2000, vol. 10 (1), pp. 73–75Google Scholar
  10. 10.
    H. Cao, A.P. Xian: Chin. J. Nonferrous Met., 2002, vol. 12 (3), pp. 570–74Google Scholar
  11. 11.
    M.J. Tenwick, H.A. Davies: Mater. Sci. Eng., 1988, vol. 98, pp. 543–46CrossRefGoogle Scholar
  12. 12.
    P. Liu, B.X. Kang, X.G. Cao, J.L. Huang, H.C. Gu: J. Mate. Sci., 2000, vol. 35 (7), pp. 1691–94CrossRefGoogle Scholar
  13. 13.
    Z.B. Sun, C.Y. Zhang, Y.M. Zhu, Z.M. Yang, B.J. Ding, X.P. Song: J. All. Comp., 2003, vol. 361 (1–2), pp. 165–68CrossRefGoogle Scholar
  14. 14.
    Z.M. Zhou, Y.P. Wang, J. Gao, M. Kolbe: Mater. Sci. Eng. A, 2005, vol. 398 (1–2), pp. 318–22Google Scholar
  15. 15.
    Z.M. Yang, Q.L. Zhang, C.Y. Zhang, Y. Sun, B.J. Ding: Phys. Lett. A, 2006, vol. 353 (1), pp. 98–100CrossRefGoogle Scholar
  16. 16.
    Z.B. Sun, Y.H. Wang, J. Guo, Y.M. Zhu, X.P. Song, R.H. Zhu: Mater. Sci. Eng. A, 2007, vols. 452–453, pp. 411–16Google Scholar
  17. 17.
    Z.B. Sun, X.P. Song, Z.D. Hu, G.Y. Liang, S. Yang, R.F. Cochrane: J. All. Comp., 2001, vol. 319 (1–2), pp. 276–79CrossRefGoogle Scholar
  18. 18.
    K.C.H. Kumar, I. Ansara, P. Wollants, L. Delaey: Z. Metallkd, 1996, vol. 87 (8), pp. 666–72Google Scholar
  19. 19.
    W. Zhuang, J. Shen, Y. Liu, L. Ling, S. Shang, Y. Du, J.C. Schuster: Z. Metallkd., 2000, vol. 91 (2), pp. 121–27Google Scholar
  20. 20.
    K.T. Jacob, S. Priya, Y. Waseda: Z. Metallkd, 2000, vol. 91 (7), pp. 594–600Google Scholar
  21. 21.
    K.C. Chou: Calphad, 1995, vol. 19 (3), pp. 315–25CrossRefGoogle Scholar
  22. 22.
    M.B. Robinson, D. Li, T.J. Rathz, G. Willims: J. Mater. Sci, 1999, vol. 34 (15), pp. 3747–53CrossRefGoogle Scholar
  23. 23.
    S.P. Elder, A. Munitz, G.J. Abbaschian: Mat. Sci. Forum, 1989, vol. 50, pp. 137–50CrossRefGoogle Scholar
  24. 24.
    C.D. Cao, G.P. Görler, D.M. Herlach, B. Wei: Mater. Sci. Eng. A, 2002, vol. 325 (1–2), pp. 503–10Google Scholar
  25. 25.
    C.D. Cao, D.M. Herlach, M. Kolbe, G.P. Görler, B. Wei: Scripta Mater., 2003, vol. 48 (1), pp. 5–9CrossRefGoogle Scholar
  26. 26.
    H. Okamoto: Phase Diagrams for Binary alloys, ASM International, Materials Park, 2000, 282Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2008

Authors and Affiliations

  • Zhanbo Sun
    • 1
    Email author
  • Juan Guo
    • 1
  • Yan Li
    • 2
  • Yaomin Zhu
    • 2
  • Qian Li
    • 1
  • Xiaoping Song
    • 1
  1. 1.School of Science, State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringHenan University of Science and TechnologyLuoyangPeople’s Republic of China

Personalised recommendations