Metallurgical and Materials Transactions A

, Volume 39, Issue 3, pp 502–512 | Cite as

Modeling of Thermodynamic Properties and Phase Equilibria for the Al-Sm Binary System

  • S.H. Zhou
  • R.E. NapolitanoEmail author


The thermodynamic properties and associated phase equilibria for the Al-Sm binary system are examined, and experimental results regarding the stability of the Al3Sm, Al11Sm3, and Al4Sm intermetallics are incorporated. In the analysis presented, the liquid phase is described using a three-species association model, the intermediate phases are treated as stoichiometric compounds, and the terminal phases are treated as solid solutions with a single sublattice model. In addition to the stable phases, thermodynamic descriptions of the metastable Al11Sm3-α and Al4Sm-γ phases are employed, and both stable and metastable phase equilibria are presented over the full composition range, providing a general model, which is consistent with available experimental data. Metastable liquidus curves are examined with respect to the observed crystallization behavior of amorphous Al-Sm alloys.


Gibbs Free Energy Lave Phase Undercooled Liquid Excess Gibbs Free Energy Molar Gibbs Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was performed within the Ames Laboratory Materials and Engineering Physics Program and was supported from the Office of Basic Energy Science, Division of Materials Science, United States Department of Energy (Contract No. W7405-Eng-82). The authors also thank Drs. A. Kracher and F.C. Laabs for assistance with EPMA and OIM measurements.


  1. 1.
    M.X. Quan, P. Haldar, J. Werth, and B.C. Giessen: Rapidly Solidified Alloys and Their Mechanical and Magnetic Properties, Materials Research Society, Boston, MA, 1985, vols. 2–4, pp. 299–304Google Scholar
  2. 2.
    A. Inoue, T. Zhang, K. Kita, T. Masumoto: Mater. Trans., JIM, 1989, vol. 30, pp. 870–77Google Scholar
  3. 3.
    A. Inoue: Progr. Mater. Sci., 1998, vol. 43, pp. 365–520CrossRefGoogle Scholar
  4. 4.
    G. Wilde, H. Sieber, J.H. Perepezko: J. Non-Cryst. Solids, 1999, vol. 252, pp. 621–25CrossRefGoogle Scholar
  5. 5.
    G. Wilde, H. Sieber, J.H. Perepezko: Scripta Mater., 1999, vol. 40, pp. 779–83CrossRefGoogle Scholar
  6. 6.
    S.C. Tjong, J.Q. Wang: Z. Metallkd., 2001, vol. 92, pp. 610–16Google Scholar
  7. 7.
    J.H. Perepezko, R.J. Hebert, W.S. Tong: Intermetallics, 2002, vol. 10, pp. 1079–88CrossRefGoogle Scholar
  8. 8.
    J.H. Perepezko, R.J. Hebert, R.I. Wu, G. Wilde: J. Non-Cryst. Solids, 2003, vol. 317, pp. 52–61CrossRefGoogle Scholar
  9. 9.
    J.Q. Guo, K. Ohtera, K. Kita, J. Nagahora, N.S. Kazama: Mater. Lett., 1995, vol. 24, pp. 133–38CrossRefGoogle Scholar
  10. 10.
    P. Rizzi, M. Baricco, S. Barace, L. Battezzati: Mater. Sci. Eng., A, 2001, vols. 304–306, pp. 574–78Google Scholar
  11. 11.
    S.H. Zhou, R.E. Napolitano: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1145–51. CrossRefGoogle Scholar
  12. 12.
    A. Iandelli: The Physical Chemistry of Metallic Solutions and Intermetallic Compounds, National Physical Laboratory, Teddington, Great Britain, Her Majesty’s Stationery Office, London, 1959, vol. I, pp. 3F1–10.Google Scholar
  13. 13.
    H.J. Wernick, S. Geller: Trans. TMS-AIME, 1960, vol. 218, pp. 866–68Google Scholar
  14. 14.
    K.H.J. Buschow, J.H.N. van Vucht: Philips Res. Rep., 1965, vol. 20, pp. 15–22Google Scholar
  15. 15.
    F. Casteels: J. Less-Common Met., 1967, vol. 12, pp. 210–20CrossRefGoogle Scholar
  16. 16.
    D.E. Mesquita, A.H. Gomes, K.H.J. Buschow: Acta Crystallogr., 1967, vol. 22, pp. 497–501CrossRefGoogle Scholar
  17. 17.
    K.H.J. Buschow, J.H.N. van Vucht: Philips Res. Rep., 1967, vol. 22, pp. 233–45Google Scholar
  18. 18.
    K.A.J. Gschneidner, F.W. Calderwood: Bull. Alloy Phase Diagrams, 1989, vol. 10, pp. 37–39Google Scholar
  19. 19.
    T.B. Massalski: Binary Alloy Phase Diagrams, ASM International, Materials Park, OH, 1990, pp. 213–14Google Scholar
  20. 20.
    A. Saccone, G. Cacciamani, D. Maccio, G. Borzone, R. Ferro: Intermetallics, 1998, vol. 6, pp. 201–15CrossRefGoogle Scholar
  21. 21.
    F. Sommer, M. Keita, H.G. Krull, B. Predel, J.J. Lee: J. Less-Common Met., 1988, vol. 137, pp. 267–75CrossRefGoogle Scholar
  22. 22.
    C. Colinet, A. Pastural, K.H.J. Buschow: J. Chem. Thermodyn., 1985, vol. 17, pp. 1133–39CrossRefGoogle Scholar
  23. 23.
    G. Borzone, A.M. Cardinale, A. Saccone, R. Ferro: J. Alloys Compd., 1995, vol. 220, pp. 122–25CrossRefGoogle Scholar
  24. 24.
    G. Borzone, A.M. Cardinale, N. Parodi, G. Cacciamani: J. Alloys Compd., 1997, vol. 247, pp. 141–47CrossRefGoogle Scholar
  25. 25.
    W.G. Jung, O.J. Kleppa, L. Topor: J. Alloys Compd., 1991, vol. 176, pp. 309–18CrossRefGoogle Scholar
  26. 26.
    G. Cacciamani, R. Ferro: CALPHAD, 2001, vol. 25, pp. 583–97CrossRefGoogle Scholar
  27. 27.
    Y.U.O. Esin, S.P. Kolesnikov, V.M. Baev, M.S. Petrushevskii, P.V. Gel'd: Russ. J. Phys. Chem., 1981, vol. 55, pp. 893–94Google Scholar
  28. 28.
    F. Sommer, M. Keita: J. Less-Common Met., 1987, vol. 136, pp. 95–99CrossRefGoogle Scholar
  29. 29.
    G. Borzone, G. Cacciamani, R. Ferro: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 2119–23Google Scholar
  30. 30.
    G.N. Zviadadze, L.A. Chkhikvadze, M.V. Kereselidze: Soobshch. Akad. Nauk Gruz. SSR, 1976, vol. 81, pp. 149–52Google Scholar
  31. 31.
    V.I. Kononenko, S.V. Golubev: Izv. Akad. Nauk SSSR, Met., 1990, vol. 2, pp. 197–99Google Scholar
  32. 32.
    Y.U.O. Esin, G.M. Ryss, P.V. Gel'd: Z. Fiz. Khim., 1979, vol. 53, pp. 2380–81Google Scholar
  33. 33.
    G. Borzone, A.M. Cardinale, G. Cacciamani, R. Ferro: Z. Metallkd., 1993, vol. 84, pp. 635–40Google Scholar
  34. 34.
    Test materials were supplied by the Materials Preparation Center, Ames Laboratory, US DOE, Basic Energy Sciences, Ames, IA ( Scholar
  35. 35.
    A.T. Dinsdale: CALPHAD, 1991, vol. 4, pp. 317–425CrossRefGoogle Scholar
  36. 36.
    O. Redlich, A.T. Kister: Ind. Eng. Chem., 1948, vol. 40, pp. 345–48CrossRefGoogle Scholar
  37. 37.
    F. Sommer: Z. Metallkd., 1982, vol. 73, pp. 72–86Google Scholar
  38. 38.
    H.G. Krull, R.N. Singh, F. Sommer: Z. Metallkd., 2000, vol. 91, pp. 356–65Google Scholar
  39. 39.
    S.H. Zhou, R.E. Napolitano: Acta Mater., 2006, vol. 54, pp. 831–40CrossRefGoogle Scholar
  40. 40.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais: Phys. Rev. B, 1992, vol. 46, pp. 6671–87CrossRefGoogle Scholar
  41. 41.
    D. Vanderbilt: Phys. Rev. B, 1990, vol. 41, pp. 7892–95CrossRefGoogle Scholar
  42. 42.
    G. Kresse, D. Joubert: Phys. Rev. B, 1999, vol. 59, pp. 1758–75CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2008

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringIowa State UniversityAmesUSA
  2. 2.Materials and Engineering PhysicsAmes Laboratory, USDOEAmesUSA
  3. 3.Materials and Engineering PhysicsAmes Laboratory, USDOEAmesUSA

Personalised recommendations