Metallurgical and Materials Transactions A

, Volume 39, Issue 4, pp 934–944 | Cite as

Deformation Twinning and the Hall–Petch Relation in Commercial Purity Ti



The effect of grain size and deformation temperature on the behavior of wire-drawn α-Ti during compression has been examined. At strains of 0.3, the flow stress exhibited a negative Hall–Petch slope. This is proposed to result from the prevalence of twinning during the compressive deformation. Electron backscattered diffraction revealed that \( \{ 10\ifmmode\expandafter\bar\else\expandafter\=\fi{1}2\} \) was the most prolific twin type across all the deformation temperatures and grain sizes examined. Of the twinning modes observed, \( \{ 11\ifmmode\expandafter\bar\else\expandafter\=\fi{2}2\} \) twinning was the most sensitive to the grain size and deformation temperature. The range of morphologies exhibited by deformation twins is also described.


  1. 1.
    E.O. Hall: Proc. Phys. Soc. B, 1951, vol. 64, pp. 747–53CrossRefGoogle Scholar
  2. 2.
    N.J. Petch: J. Iron Steel Inst., 1953, vol. 173 pp. 25–28Google Scholar
  3. 3.
    N. Hansen, B. Ralph: Acta Metall., 1982, vol. 30, pp. 411–17CrossRefGoogle Scholar
  4. 4.
    N. Ono, R. Nowak, S. Miura: Mater. Lett., 2003, vol. 58, pp. 39–43CrossRefGoogle Scholar
  5. 5.
    M.R. Barnett, Z. Keshavarz, A.G. Beer, D. Atwell: Acta Mater., 2004, vol. 52, pp. 5093–5103CrossRefGoogle Scholar
  6. 6.
    M.A. Meyers, O. Vohringer, V.A. Lubarda: Acta Mater., 2001 vol. 49 pp. 4025–39CrossRefGoogle Scholar
  7. 7.
    P.J. Partridge: Metall. Rev., 1967, vol. 118, pp. 169–94Google Scholar
  8. 8.
    W.H. Hosford: The Mechanics of Crystals and Textures Polycrystals, Oxford University Press, Oxford, United Kingdom, 1993Google Scholar
  9. 9.
    M.H. Yoo: Metall. Trans. A, 1981, vol. 12A, pp. 409–18Google Scholar
  10. 10.
    S.G. Song, G.T. Gray: Acta Metall. Mater., 1995, vol. 43, pp. 2325–37CrossRefGoogle Scholar
  11. 11.
    M. Garde, R.E. Reed-Hill: Metall. Trans., 1971, vol. 2, pp. 2885–88CrossRefGoogle Scholar
  12. 12.
    R.J. Lederich, S.M.L. Sastry, J.E. O’Neal, B.B. Rath: Mater. Sci. Eng., 1978, vol. 33, pp. 183–88CrossRefGoogle Scholar
  13. 13.
    S. Nemat-Nasser, W.G. Guo, J.Y. Cheng: Acta Mater., 1999, vol. 47, pp. 3705–20CrossRefGoogle Scholar
  14. 14.
    H. Francillette, B. Bacroix, M. Gasperini, J.L. Bechade: Mater. Sci. Eng. A, 1997, vol. 237–236, pp. 974–77Google Scholar
  15. 15.
    A.A. Salem, S.R. Kalidindi, R.D. Doherty: Acta Mater., 2003, vol. 51, pp. 4225–37CrossRefGoogle Scholar
  16. 16.
    A.A. Salem, S.R. Kalidindi, R.D. Doherty: Scripta Mater., 2002, vol. 46, pp. 419–23CrossRefGoogle Scholar
  17. 17.
    N. Ecob, B. Ralph: J. Mater. Sci., 1983, vol. 18, pp. 2419–29CrossRefGoogle Scholar
  18. 18.
    P. Mullner, A.E. Romanov: Acta Mater., 2000, vol. 48, pp. 2323–37CrossRefGoogle Scholar
  19. 19.
    B.C. Wonsiewicz, W.A. Backofen: Trans. TMS-AIME, 1967, vol. 239, pp. 1422–31Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2008

Authors and Affiliations

  1. 1.Centre for Material and Fibre InnovationDeakin UniversityGeelongAustralia

Personalised recommendations