Advertisement

Metallurgical and Materials Transactions A

, Volume 39, Issue 3, pp 679–687 | Cite as

Prediction of Elastic Modulus + Anisotropy Using X-Ray and Electron Backscattered Diffraction Texture Quantification and Ultrasonic (Electromagnetic Acoustic Transducer) Measurements in Aluminum Sheets

  • C.L. DavisEmail author
  • M. Strangwood
  • M. Potter
  • S. Dixon
  • P.F. Morris
Article

Abstract

Crystallographic texture is generally measured using X-ray diffraction, performed off-line using small samples determining near-surface texture only; electron backscattered diffraction (EBSD) can also be used, but only samples relatively small areas. Ultrasonic methods determine elastic property anisotropy and texture, via orientation distribution coefficients (ODCs), and while there is substantial literature comparing ultrasonically determined properties with X-ray or neutron diffraction texture, there is little discussion about texture inhomogeneity (place to place in a sheet or through thickness) and sampling volume effects (X-ray compared to EBSD) on the accuracy of the correlations. In this article, the crystallographic texture of nominally pure aluminum and commercial aluminum alloy sheets has been determined by X-ray diffraction and EBSD and used to calculate the elastic anisotropy, which is then compared to ultrasonic electromagnetic acoustic transducer (EMAT) velocity anisotropy taking into account through-thickness texture variations. Significant and consistent spatial variability in texture occurs in the aluminum sheet samples (sheet edge to center and through thickness). Predictions of elastic anisotropy based on surface texture determination, as characterized by X-ray diffraction or surface EBSD, gave poor correlations with EMAT velocity anisotropy when the sample contained significant through thickness texture variations; however, accounting for this using multiple EBSD scans through thickness gave good correlations.

Keywords

Texture Component Ultrasonic Velocity Aluminum Sheet Rolling Texture Cube Texture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank the United Kingdom Engineering and Physical Sciences Research Council for its support of this research. The experimental work carried out by Dr. Ahmad Sulaiman, Tracey Holmes, and Jim Morrison is gratefully acknowledged. The assistance of Dr. Jerry Lord, National Physical Laboratory, in measuring the mechanically determined elastic modulus values is very gratefully acknowledged.

References

  1. 1.
    R.W. Herztberg: Deformation and Fracture Mechanics of Engineering Material, 4th ed., John Wiley & Sons, New York, NY, 1996Google Scholar
  2. 2.
    A. Moreau, D. Leevesque, M. Lord, M. Dubois, J.-P. Monchalin, C. Padioleau, J.F. Bussieere: Ultrasonics, 2002, vol. 40, pp. 1047–56CrossRefGoogle Scholar
  3. 3.
    R.B. Thompson, S.S. Lee, J.F. Smith: J. Acoust. Soc. Am., 1986, vol. 80, pp. 921–31CrossRefGoogle Scholar
  4. 4.
    K. Kawashima: J. Acoust. Soc. Am., 1990, vol. 87, pp. 681–90CrossRefGoogle Scholar
  5. 5.
    K. Kawashima, T. Hyoguchi, T. Akagi: J. Nondestruct. Eval., 1993, vol. 12 (1), pp. 71–77CrossRefGoogle Scholar
  6. 6.
    M. Hirao, H. Ogi: Ultrasonics, 1997, vol. 35, pp. 413–21CrossRefGoogle Scholar
  7. 7.
    S.R. Agnew, J.R. Weertman: Mater. Sci. Eng., 1998, vol. A242, pp. 174–80Google Scholar
  8. 8.
    C.M. Sayers, G.G. Proudfoot: Mech. Phys. Solids, 1986, vol. 34 (6), pp. 579–92CrossRefGoogle Scholar
  9. 9.
    D. Artymowicz, B. Hutchinson, M. Nogues: Mater. Sci. Technol., 2002, vol. 18, pp. 1142–46CrossRefGoogle Scholar
  10. 10.
    H.J. Bunge: Texture Analysis in Materials Science, Butterworth and Co., London, 1982, p. 321Google Scholar
  11. 11.
    J.F. Nye: Physical Properties of Crystals, Oxford University Press, London, 1957Google Scholar
  12. 12.
    J. Lewandowski: NDT&E Int., 1999, vol. 32, pp. 383–96CrossRefGoogle Scholar
  13. 13.
    R.B. Thompson, S.S. Lee, J.F. Smith: Ultrasonics, 1987, vol. 25, p. 133CrossRefGoogle Scholar
  14. 14.
    G.E. Dieter: Mechanical Metallurgy, 4th ed., McGraw-Hill Book Co., New York, NY, 1988Google Scholar
  15. 15.
    Labosoft: http://www.labosoft.com.pl/index.htm, viewed June 28, 2007
  16. 16.
    R.J. Roe: J. Appl. Phys., 1966, vol. 37 (5), pp. 2069–72CrossRefGoogle Scholar
  17. 17.
    R.J. Roe: J. Appl. Phys., 1965, vol. 36 (6), pp. 2024–31CrossRefGoogle Scholar
  18. 18.
    C.M. Sayers: J. Phys. D, 1982, vol. 15, pp. 2157–67CrossRefGoogle Scholar
  19. 19.
    M.D.G. Potter, S. Dixon, J.P. Morrison, A.S. Sulaiman: Ultrasonics, 2006, vol. 44, pp. e813–e817CrossRefGoogle Scholar
  20. 20.
    R.B. Thompson, J.F. Smith, S.S. Lee, G.C. Johnson: Metall. Trans. A, 1989, vol. 20, pp. 2431–47CrossRefGoogle Scholar
  21. 21.
    S.H. Tang, S. Wu, S.T. Tu, M. Kobayashi: Theor. Appl. Fract. Mech., 2006, vol. 45, pp. 128–38CrossRefGoogle Scholar
  22. 22.
    V. Clark Jr., R.C. Reno, R.B. Thompson, J.F. Smith, G.V. Blessing, R.J. Fields, P.P. Delsanto, R.B. Mignogna: Ultrasonics, 1988, vol. 26, pp. 189–97CrossRefGoogle Scholar
  23. 23.
    R.B. Thompson, S.S. Lee, Y. Li, C.M. Sayers: Mater. Sci. Eng., 1994, vol. A177, pp. 261–67Google Scholar
  24. 24.
    M.P. Miller, T.J. Turner: Int. J. Plasticity, 2001, vol. 17, pp. 783–805CrossRefGoogle Scholar
  25. 25.
    O.V. Mishin, B. Bay, G. Winther, D. Juul Jensen: Acta Mater., 2004, vol. 52, pp. 5761–70CrossRefGoogle Scholar
  26. 26.
    S.E. Schoenfeld, R.J. Asaro: Int. J. Mech. Sci., 1996, vol. 38, pp. 661–83CrossRefGoogle Scholar
  27. 27.
    R.E. Zinkham, C. Baker: Eng. Fract. Mech., 1969, vol. 1, pp. 495–98CrossRefGoogle Scholar
  28. 28.
    M. Hirao, N. Hara, H. Fukuoka: Ultrasonics, 1987, vol. 25, pp. 107–11CrossRefGoogle Scholar
  29. 29.
    X.-H. Zeng, T. Ericsson: Acta Mater. 1996, vol. 44, pp. 1801–12CrossRefGoogle Scholar
  30. 30.
    M.D.G. Potter, S Dixon, C.L. Davis: Meas. Sci. Technol., 2004, vol. 15, pp. 1303–08CrossRefGoogle Scholar
  31. 31.
    R.J. Dewhurst, C. Edwards, A.D.W. McKie, S.B. Palmer: Appl. Phys. Lett., 1987, vol. 51, pp. 1066–68CrossRefGoogle Scholar
  32. 32.
    J. Morrison: University of Warwick, Coventry, United Kingdom, unpublished research, 2007Google Scholar
  33. 33.
    R.K. Ray, J. Jonas: Int. Mater. Rev., 1990, vol. 35, pp. 1–35Google Scholar
  34. 34.
    D.S. Hoddinott, G.J. Davies: J. Inst. Met., 1969, vol. 97, pp. 155–59Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2008

Authors and Affiliations

  • C.L. Davis
    • 1
    Email author
  • M. Strangwood
    • 1
  • M. Potter
    • 2
  • S. Dixon
    • 2
  • P.F. Morris
    • 3
  1. 1.Department of Metallurgy and MaterialsUniversity of BirminghamEdgbaston, BirminghamUnited Kingdom
  2. 2.Department of PhysicsUniversity of WarwickCoventryUnited Kingdom
  3. 3.Corus plc., Swinden Technology CentreMoorgate, RotherhamUnited Kingdom

Personalised recommendations