Metallurgical and Materials Transactions A

, Volume 39, Issue 3, pp 593–603 | Cite as

Transmission Electron Microscopy and Nanoindentation Study of the Weld Zone Microstructure of Diode-Laser-Joined Automotive Transformation-Induced Plasticity Steel

  • J. Chen
  • K. Sand
  • M.S. Xia
  • C. Ophus
  • R. Mohammadi
  • M.L. Kuntz
  • Y. Zhou
  • D. Mitlin


We have used transmission electron microscopy (TEM) and nanoindentation to characterize the dominant phases present in the weld zone of a diode-laser-welded transformation-induced plasticity (TRIP) steel, examining the unaffected base metal as a baseline. The microstructure of the base metal consists predominantly of ferrite, retained austenite, martensite, and occasional large carbide particles. The dominant microstructure of the weld zone is of differently oriented packets having a bainitic morphology. The weld also contains allotriomorphic ferrite, idiomorphic ferrite, as well some twinned martensite that is surrounded by austenite. The TEM analysis of the bainitic-morphology packets indicates that they consist of a lath ferrite phase separated by an interlath carbon-enriched retained austenite. In most cases, the orientation relationship (OR) between the lath ferrite and the interlath retained austenite can be approximated as Nishiyama–Wasserman (N-W). We used site-specific nanoindentation to further characterize the packets and the allotriomorphic ferrite, confirming through the hardness values the conclusions reached by TEM. While martensite was regularly present in the base metal, it was only sparsely distributed within the weld zone, boding well for the weld’s mechanical properties.


Ferrite Austenite Martensite Bainite Welding Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are very grateful to Harry Bhadeshia and Velimir Radmilovic for the critical presubmission reviews of this manuscript. We also thank Ryan O′Hagan, MTS, for assistance with the nanoindentation testing and for very useful discussions. One of the authors (JC) wants to thank Dr. Fu-Gao Wei, National Institute for Materials Science of Japan, for the discussion. This research is financially supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada and AUTO21 Network Centres of Excellence of Canada.


  1. 1.
    S. Zaefferer, J. Ohlert, W. Bleck: Acta Mater., 2004, vol. 52, pp. 2765–78CrossRefGoogle Scholar
  2. 2.
    P.J. Jacques: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 259–65CrossRefGoogle Scholar
  3. 3.
    H.K.D.H. Bhadeshia: ISIJ Int., 2002, vol. 42, pp. 1059–60. CrossRefGoogle Scholar
  4. 4.
    T.K. Han, S.S. Park, K.H. Kim, C.Y. Kang, I.S. Woo, J.B. Lee: ISIJ Int., 2005, vol. 45, pp. 60–65CrossRefGoogle Scholar
  5. 5.
    T.K. Han, K.H. Kim, B.I. Kim, C.Y. Kang, I.S. Woo, J.B. Lee: Mater. Sci. Forum, 2004, vols. 449–452, pp. 409–12. CrossRefGoogle Scholar
  6. 6.
    P.L. Moore, D.S. Howse, and E.R. Wallach: 6th Int. Conf. on Trends in Welding Research, Pine Mountain, GA, May 2002, oral presentation and private communicationGoogle Scholar
  7. 7.
    S. Lawson, X. Li, and Y. Zhou: Sheet Metal Welding Conf. XII, Livonia, MI, May 2006, p. 9Google Scholar
  8. 8.
    K.W. Andrews, D.J. Dyson, S.R. Keown: Interpretation of Electron Diffraction Patterns, 2nd ed., Plenum Press, New York, NY, 1971, pp. 210–11Google Scholar
  9. 9.
    G.R. Speich, W.C. Leslie: Metall. Trans., 1972, vol. 3, p. 1043. CrossRefGoogle Scholar
  10. 10.
    A.Z. Hanzaki, P.D. Hodgson, S. Yue: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2405–14CrossRefGoogle Scholar
  11. 11.
    B. Verlinden, P. Bocher, E. Girault, E. Aernoudt: Scripta Mater., 2001, vol. 45, pp. 909–16CrossRefGoogle Scholar
  12. 12.
    R.W.K. Honeycombe, H.K.D.H. Bhadeshia: Steels Microstructure and Properties, 2nd ed., Butterworth Heinemann, Oxford, United Kingdom, 2000, pp. 115–39Google Scholar
  13. 13.
    H.K.D.H. Bhadeshia: private communication, University of Cambridge, UK, Dec 2006Google Scholar
  14. 14.
    Q. Furnemont, M. Kempf, P.J. Jacques, M. Goken, F. Delannay: Mater. Sci. Eng. A, 2002, vol. 328, pp. 26–32. CrossRefGoogle Scholar
  15. 15.
    J. Angeli, A.C. Kneissl: Z. Metallkd., 2004, vol. 95, pp. 601–06Google Scholar
  16. 16.
    M. De Meyer, D. Vanderschueren, B.C. De Cooman: ISIJ Int., 1999, vol. 39, pp. 813–22. CrossRefGoogle Scholar
  17. 17.
    H.K.D.H. Bhadeshia, D.V. Edmonds: Metall. Trans. A, 1979, vol. 10A, pp. 895–07Google Scholar
  18. 18.
    B.C. De Cooman: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 285–03CrossRefGoogle Scholar
  19. 19.
    R.W.K. Honeycombe, F.B. Pickering: Metall. Trans., 1972, vol. 3, p. 1099CrossRefGoogle Scholar
  20. 20.
    H.K.D.H. Bhadeshia: Bainite in Steels: Transformations, Microstructure and Properties, 2nd ed., IOM Communications, Ltd., London, 2001, pp. 19–61Google Scholar
  21. 21.
    T. Maki, C.M. Wayman: Acta Metall., 1977, vol. 25, pp. 695–710CrossRefGoogle Scholar
  22. 22.
    T.V. Eterashvili, L.M. Utevskiy, M.N. Spasskiy: Fiz. Met. Metall., 1979, vol. 48, pp. 807–15Google Scholar
  23. 23.
    G. Spanos, R.W. Fonda, R.A. Vandermeer, A. Matuszeski: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 3277–93CrossRefGoogle Scholar
  24. 24.
    R.W. Fonda, G. Spanos: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2145–53CrossRefGoogle Scholar
  25. 25.
    P.M. Kelly, A. Jostsons, R.G. Blake: Acta. Metall. Mater., 1990, vol. 38, pp. 1075–81CrossRefGoogle Scholar
  26. 26.
    S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki: Acta Mater., 2003, vol. 51, pp. 1789–99. CrossRefGoogle Scholar
  27. 27.
    J.E. Gould, S.P. Khurana, T. Li: Welding J., 2006, vol. 85, pp. 111S–116SGoogle Scholar
  28. 28.
    O. Akselsen, O. Grong, J. Solberg: Mater. Sci. Technol., 1987, vol. 3, pp. 649–55Google Scholar

Copyright information


Authors and Affiliations

  • J. Chen
    • 1
  • K. Sand
    • 1
  • M.S. Xia
    • 2
  • C. Ophus
    • 1
  • R. Mohammadi
    • 1
  • M.L. Kuntz
    • 2
  • Y. Zhou
    • 2
  • D. Mitlin
    • 1
  1. 1.Department of Chemical and Materials EngineeringUniversity of Alberta, and the National Institute for NanotechnologyEdmontonCanada
  2. 2.Department of Mechanical EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations