Metallurgical and Materials Transactions A

, Volume 39, Issue 8, pp 1804–1811 | Cite as

Effect of Intense Rolling and Folding on the Phase Stability of Amorphous Al-Y-Fe Alloys

  • R.J. HebertEmail author
  • J.H. Perepezko
Symposium: Bulk Metallic Glasses IV


A systematic examination of the effect of intense deformation on the crystallization behavior of amorphous Al85Y10Fe5, Al86Y9Fe5, and Al88Y5Fe7 alloys demonstrated a strong composition dependence of the crystallization reactions at true strain levels of about −500 pct. Primary crystallization occurs during the deformation of the Al88Y5Fe7 alloy, but for the Al86Y9Fe5 and Al85Y10Fe5 alloys, deformation-induced crystallization is not observed at a true strain of about −500 pct. At strain levels of the order of −1200 pct, the Al85Y10Fe5 alloy develops regions with primary Al, which is not observed during thermal processing of the same amorphous alloy without deformation. In addition, at strain levels of −1200 pct, a deformed Al88Y7Fe5 sample displays strong microstructural heterogeneities. Transmission electron microscopy (TEM) analysis showed the presence of nanocrystal dispersions adjacent to shear bands with a total width of about half a micrometer. The results demonstrate that the phase selection during deformation-induced crystallization can deviate from the thermally-induced phase selection. Novel phases and microstructures can thus be obtained from the deformation processing of amorphous alloys.


Shear Band Metallic Glass Amorphous Alloy Primary Crystallization Intense Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the helpful suggestions for the TEM analysis offered by Dr. Harald Rösner, Institute of Nanotechnology, Research Center Karlsruhe. The help of Thomas Jaster and John Lyons with the cold-rolling experiments is also acknowledged.


  1. 1.
    H. Chen, Y. He, G.J. Shiflet, S.J. Poon: Nature, 1994, vol. 367 (6463), pp. 541–44CrossRefGoogle Scholar
  2. 2.
    W.H. Jiang, M. Atzmon: Acta Mater., 2003, vol. 51 (14), pp. 4095–105CrossRefGoogle Scholar
  3. 3.
    R.J. Hebert, J.H. Perepezko: Mater. Sci. Eng., 2004, vols. A375–A377, . pp. 728–32Google Scholar
  4. 4.
    P.E. Donovan, W.M. Stobbs: Acta Metall., 1981, vol. 29 (8), pp. 1419–36CrossRefGoogle Scholar
  5. 5.
    Q.K. Li, M. Li: Appl. Phys. Lett., 2006, vol. 88 (24), pp. 241903–04CrossRefGoogle Scholar
  6. 6.
    J.J. Lewandowski, A.L. Greer: Nature Mater., 2006, vol. 5 (1), pp. 15–18CrossRefGoogle Scholar
  7. 7.
    R.J. Hebert, N. Boucharat, J.H. Perepezko, H. Rösner, G. Wilde: J. Alloys Compd., 2007, vols. 434–435, pp. 18–21CrossRefGoogle Scholar
  8. 8.
    J.-J. Kim, Y. Choi, S. Suresh, and A.S. Argon: Science, 2002, vol. 295 (5555), pp. 654–57Google Scholar
  9. 9.
    T. Masumoto and R. Maddin: Mater. Sci. Eng., 1975, vol. 19 (1), pp. 1–24CrossRefGoogle Scholar
  10. 10.
    G. Wilde: private communication, Institute of Nanotechnology, Research Center Karlsruhe, GermanyGoogle Scholar
  11. 11.
    J.C. Foley, J.H. Perepezko: J. Non-Cryst. Solids, 1996, vols. 205–207, pp. 559–62CrossRefGoogle Scholar
  12. 12.
    A. Inoue, K. Ohtera, A.-P. Tsai, T. Masumoto: Jpn. J. Appl. Phys., 1988, vol. 27 (4), pp. 479–82CrossRefGoogle Scholar
  13. 13.
    O. Li, E. Johnson, A. Johanson, L. Sarholt-Kristensen: J. Mater. Res., 1992, vol. 7 (10), pp. 2756–64CrossRefGoogle Scholar
  14. 14.
    R.F. Cochrane, P. Schumacher, A.L. Greer: Mater. Sci. Eng., 1991, vol. A133, pp. 367–70Google Scholar
  15. 15.
    N. Boucharat, R.J. Hebert, H. Rösner, R.Z. Valiev, G. Wilde: Scripta Mater., 2005, vol. 53 (7), pp. 823–28CrossRefGoogle Scholar
  16. 16.
    D.R. Allen, J.C. Foley, J.H. Perepezko: Acta Mater., 1998, vol. 46 (2), pp. 431–40CrossRefGoogle Scholar
  17. 17.
    A. Inoue, K. Ohtera, A.-P. Tsai, and T. Masumoto: Jpn. J. Appl. Phys., 1988, vol. 27 (3), Part 2, L280–L282Google Scholar
  18. 18.
    W.G. Stratton, J. Hamann, J.H. Perepezko, P.M. Voyles, X. Mao, S.V. Khare: Appl. Phys. Lett., 2005, vol. 86 (14), pp. 141910–13CrossRefGoogle Scholar
  19. 19.
    S.-W. Lee, M.-Y. Huh, S.W. Chae, J.-C. Lee: Scripta Mater., 2006, vol. 54 (8), pp. 1439–44CrossRefGoogle Scholar
  20. 20.
    A.A. Csontos, G.J. Shiflet: Nanostruct. Mater., 1997, vol. 9 (1–8), pp. 281–89CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, A.L. Greer: Appl. Phys. Lett., 2006, vol. 89 (7), 071907–09CrossRefGoogle Scholar
  22. 22.
    Z. Kovács, P. Henitis, A.P. Zhilyaev, Á. Révész: Scripta Mater., 2006, vol. 54 (10), pp. 1733–37CrossRefGoogle Scholar
  23. 23.
    A. Ogura, R. Tarumi, M. Shimojo, K. Takashima, Y. Higo: Appl. Phys. Lett., 2001, vol. 79 (7), pp. 1042–44CrossRefGoogle Scholar
  24. 24.
    M.L. Sui, K. Lu, Y.Z. He: Philos. Mag., 1991, vol. 63 (4), pp. 993–1008CrossRefGoogle Scholar
  25. 25.
    G.J. Fan, M.X. Quan, Z.Q. Hu, W. Löser, J. Eckert: J. Mater. Res., 1999, vol. 14 (9), pp. 3765–74CrossRefGoogle Scholar
  26. 26.
    J.H. Perepezko, R.J. Hebert, and G. Wilde: Mater. Sci. Engr., 2004, vols. A375–A377, pp. 171–77CrossRefGoogle Scholar

Copyright information


Authors and Affiliations

  1. 1.Chemical, Materials, and Biomolecular Engineering DepartmentUniversity of ConnecticutStorrsUSA
  2. 2.Department of Materials Science and EngineeringUniversity of Wisconsin–MadisonMadisonUSA

Personalised recommendations