Metallurgical and Materials Transactions A

, Volume 38, Issue 12, pp 2974–2983 | Cite as

Correlation between the Microstructure, Growth Mechanism, and Growth Kinetics of Alumina Scales on a FeCrAlY Alloy

  • D. Naumenko
  • B. Gleeson
  • E. Wessel
  • L. Singheiser
  • W.J. Quadakkers


The microstructural development of an alumina scale formed on a model FeCrAlY alloy during oxidation at 1200 °C was characterized for up to 2000 hours of growth. Quantitative scanning electron microscopy (SEM) studies revealed that the scale had a columnar microstructure, with the grain size being a linear function of the distance from the scale/gas interface. For a given fixed distance from the scale/gas interface, there was found to be no change in the oxide grain size for exposure times ranging from 24 to 2000 hours at 1200 °C, up to 100 hours at 1250 °C. Thus, there was no significant coarsening of existing grains in the scale. Through oxygen tracer experiments, the scale-growth mechanism was shown to be predominated by inward oxygen diffusion along the oxide grain boundaries. Electron backscatter diffraction (EBSD) analysis further revealed that a competitive oxide-grain growth mechanism operates at the scale/alloy interface, which is manifested by a preferential crystallographic grain orientation. The scale-thickening kinetics were modeled using the experimentally-derived, microstructural parameters and were found to be in excellent agreement with converted thermogravimetric (TG) measurements. The model predicted a subparabolic oxidation rate, with the time exponent decreasing with increasing exposure time. The values of the time exponent were shown to be approximately 0.35 to 0.37, at oxidation times commonly reached in the TG experiments, i.e., a few tens of hours. At longer oxidation times of a few thousand hours and with a constant rate of average oxide-grain size increase, the time exponent was predicted to approach 0.33, corresponding to an ideal cubic oxidation rate.


  1. 1.
    A. Atkinson: Rev. Mod. Phys., 1985, vol. 57 (2), pp. 437–70CrossRefGoogle Scholar
  2. 2.
    J. Smialek, R. Gibala: Proc. Int. Conf. on High Temperature Corrosion, R.A. Rapp, ed., National Association of Corrosion Engineers, Houston, TX, 1983, pp. 274–83Google Scholar
  3. 3.
    A.M. Huntz: J. Mater. Sci. Lett., 1999, vol. 18, pp. 1981–84CrossRefGoogle Scholar
  4. 4.
    P. Barberis: J. Nucl. Mater., 1995, vol. 226, pp. 34–43CrossRefGoogle Scholar
  5. 5.
    B.A. Pint: Proc. J. Stringer Symp. on High Temperature Corrosion, ASM International, Materials Park, OH, 2003, pp. 9–19Google Scholar
  6. 6.
    P.Y. Hou, J. Stringer: Oxid. Met., 1992, vol. 38(5–6), pp. 323–45CrossRefGoogle Scholar
  7. 7.
    H.J. Grabke, D. Wiemer, H. Viefhaus: J. Appl. Surf. Sci., 1991, vol. 47, pp. 243–50CrossRefGoogle Scholar
  8. 8.
    W.J. Quadakkers: Mater. Corros., 1990, vol. 41, pp. 659–68CrossRefGoogle Scholar
  9. 9.
    K. Bongartz, W.J. Quadakkers, J.P. Pfeifer, J.S. Becker: Surf. Sci., 1993, vol. 292, pp. 196–208CrossRefGoogle Scholar
  10. 10.
    W.J. Quadakkers, H. Holzbrecher, K.G. Briefs, H. Beske: Oxid. Met., 1989, vol. 32 (1–2), pp. 67–88CrossRefGoogle Scholar
  11. 11.
    B.A. Pint: Oxid. Met., 1996, vol. 45(1–2), pp. 1–37CrossRefGoogle Scholar
  12. 12.
    E. Schumann, J.C. Yang, M.J. Graham, M. Rühle: Mater. Corros., 1995, vol. 46, pp. 218–22CrossRefGoogle Scholar
  13. 13.
    P.Y. Hou: J. Am. Ceram. Soc., 2003, vol. 86, pp. 660–68CrossRefGoogle Scholar
  14. 14.
    J. Cho, C.M. Wang, H.M. Chan, J.M. Rickman, M.P. Harmer: Acta Mater., 1999, vol. 47(15), pp. 4197–207CrossRefGoogle Scholar
  15. 15.
    J. Chen, L. Ouyang, W.Y. Ching: Acta Mater., 2005, vol. 53, pp. 4111–20CrossRefGoogle Scholar
  16. 16.
    B.A. Pint, K.B. Alexander: J. Electrochem. Soc., 1998, vol. 145, pp. 1819–29CrossRefGoogle Scholar
  17. 17.
    G.C. Wood and F.H. Stott: Proc. Int. Conf. on High Temperature Corrosion, R.A. Rapp, ed., National Association of Corrosion Engineers, Houston, TX, 1983, pp. 227-50Google Scholar
  18. 18.
    J.A. Nychka, D.R. Clarke: Oxid. Met., 2005, vol. 63(5–6), pp. 325–52CrossRefGoogle Scholar
  19. 19.
    H. Al-Badairy, D.J. Prior, G.J. Tatlock: Mater. High Temp., 2005, vol. 22(3–4), pp. 453–60CrossRefGoogle Scholar
  20. 20.
    J.R. Blachere, E. Schumann, G.H. Meier, F.S. Pettit: Scripta Mater., 2003, vol. 49, pp. 909–12CrossRefGoogle Scholar
  21. 21.
    Z. Liu, W. Gao, Y. He: Oxid. Met., 2000, vol. 53(3–4), pp. 341–50CrossRefGoogle Scholar
  22. 22.
    I.G. Wright, B.A. Pint, C.S. Simpson, P.F. Tortorelli: Mater. Sci. Forum, 1997, vols. 251–254, pp. 195–202Google Scholar
  23. 23.
    K. Ishii, M. Kohno, S. Ishikawa, S. Satoh: Mater. Trans., JIM, 1997, vol. 38(9), pp. 787–92Google Scholar
  24. 24.
    W.J. Quadakkers, D. Naumenko, E. Wessel, V. Kochubey, L. Singheiser: Oxid. Met., 2004, vol. 61(1–2), pp. 17–37CrossRefGoogle Scholar
  25. 25.
    B. Pieraggi: Oxid. Met., 2005, vol. 64(5–6), pp. 397–403CrossRefGoogle Scholar
  26. 26.
    D. Naumenko, J. Le-Coze, E. Wessel, W. Fischer, W.J. Quadakkers: Mater. Trans., JIM, 2002, vol. 43(2), pp. 168–72CrossRefGoogle Scholar
  27. 27.
    W.J. Quadakkers, A. Elschner, W. Speier, H. Nickel: Appl. Surf. Sci., 1991, vol. 52, pp. 271–87CrossRefGoogle Scholar
  28. 28.
    N. Birks, G.H. Meier, F.S. Pettit: Introduction to the High Temperature Oxidation of Metals, Cambridge University Press, Cambridge, United Kingdom, 2006. Google Scholar
  29. 29.
    J. Cho, J.M. Rickman, H.M. Chan, M.P. Harmer: J. Am. Ceram. Soc., 2000, vol. 83, pp. 344–52CrossRefGoogle Scholar
  30. 30.
    S. Fabris, C. Elsässer: Acta Mater., 2003, vol. 51, pp. 71–86CrossRefGoogle Scholar
  31. 31.
    J.D. Eshelby: Solid State Phys., 1956, vol. 3, p. 79CrossRefGoogle Scholar
  32. 32.
    C.M. Wang, G.S. Cargill III, M.P. Harmer, H.M. Chan, J. Cho: Acta Mater., 1999, vol. 47, pp. 3411–22CrossRefGoogle Scholar
  33. 33.
    J.H. Harding, K.J.W. Atkinson, R.W. Grimes: J. Am. Ceram. Soc., 2003, vol. 86, pp. 554–59Google Scholar
  34. 34.
    J. Hen, P. Rulis, Y.-N. Xu, L. Ouyang, W.Y. Ching: Acta Mater., 2005, vol. 53, pp. 403–10CrossRefGoogle Scholar
  35. 35.
    E. Wessel, V. Kochubey, D. Naumenko, L. Niewolak, L. Singheiser, W.J. Quadakkers: Scripta Mater., 2004, vol. 51(10), pp. 987–92CrossRefGoogle Scholar
  36. 36.
    W.J. Quadakkers, D. Naumenko, L. Singheiser, H.J. Penkalla, A.K. Tyagi, A. Czyrska-Filemonowicz: Mater. Corros., 2000, vol. 51, pp. 350–57CrossRefGoogle Scholar
  37. 37.
    V.K. Tolpygo, D.R. Clarke: Mater. High Temp., 2000, vol. 17(1), pp. 59–70Google Scholar

Copyright information


Authors and Affiliations

  • D. Naumenko
    • 1
  • B. Gleeson
    • 2
    • 3
  • E. Wessel
    • 1
  • L. Singheiser
    • 1
  • W.J. Quadakkers
    • 1
  1. 1.Forschungszentrum Jülich GmbHJülichGermany
  2. 2.Materials Science and Engineering DepartmentIowa State UniversityAmesUSA
  3. 3.Department of Mechanical Engineering and Materials ScienceUniversity of PittsburghPittsburghUSA

Personalised recommendations