Metallurgical and Materials Transactions A

, Volume 38, Issue 11, pp 2815–2824 | Cite as

Effects of Degree of Deformation and Deformation Temperature on Primary Recrystallization Textures in Polycrystalline Nickel

Article

Abstract

The effects of both deformation temperature and degree of deformation on the deformation texture, recrystallization behavior, and recrystallization texture were studied for cold-rolled, high-purity, polycrystalline nickel. Differential scanning calorimetry was used to determine both the stored energy of deformation and the recrystallization temperature, and electron backscatter patterns were employed to reveal both the deformation and recrystallization textures of nickel rolled to either 90 pct thickness reduction at −196 °C, 25 °C, and 200 °C or rolled to 90, 95, and 98 pct thickness reductions at 25 °C. The results show that decreasing the rolling temperature below room temperature increased the stored energy considerably and decreased the recrystallization temperature, whereas increasing the rolling temperature had no effect on either the stored energy or the recrystallization temperature. These different rolling temperatures had little effect on the cube texture produced by primary recrystallization. In contrast, increasing the rolling reduction increased the stored energy (at least from 90 to 95 pct), decreased the primary recrystallization temperature, and also sharpened the primary-recrystallized cube texture.

References

  1. 1.
    K. Lücke, K Detert: Acta Metall., 1951, vol. 5, p. 628–37Google Scholar
  2. 2.
    R.D. Doherty: Progr. Mater. Sci., 1997, vol. 42, p. 39–58CrossRefGoogle Scholar
  3. 3.
    R. Carel, C.V. Thompson, H.J. Frost: Acta Mater., 1996, vol. 44, p. 2479–94CrossRefGoogle Scholar
  4. 4.
    I. Baker, J. Li: Micr. Res. Technique, 2004, vol. 63 (5), p. 289–97CrossRefGoogle Scholar
  5. 5.
    J. Li, I. Baker: Mater. Sci. Eng. A, 2005, vol. 392, p. 8–22CrossRefGoogle Scholar
  6. 6.
    A. Goyal, D.P. Norton, J.D. Budai, M. Paranthaman, E.D. Specht, D.M. Kroeger, D.K. Christen, Q. He, B. Saffian, F.A. List, D.F. Lee, P.M. Martin, C.E. Klabunde, E. Hartfield, V.K. Sikk: Appl. Phys. Lett., 1996, vol. 69, p. 1795–97CrossRefGoogle Scholar
  7. 7.
    A. Goyal, E.D. Specht, D.M. Kroeger, and M. Paranthaman: U.S. Patent 5,964,966, 1999Google Scholar
  8. 8.
    B. De Boer, J. Eickemeyer, N. Reger, L. Fernandez, B. Holzapfel, L. Schultz, W. Prusseit, P. Berberich: Acta Mater., 2001, vol. 49, p. 1421–28CrossRefGoogle Scholar
  9. 9.
    D.P. Norton, A. Goyal, J.D. Budai, D.K. Christen, D.M. Kroeger, E.D. Specht, Q. He, B. Saffian, M. Paranthaman, C.E. Klabunde, D.F. Lee, B.C. Sales, F.A. List: Science, 1996, vol. 274, p. 755–57CrossRefGoogle Scholar
  10. 10.
    E.D. Specht, A. Goyal, D.F. Lee, List FA, D.M. Kroeger, M. Paranthaman, R.K. Williams, D.K. Christen: Supercond. Sci. Technol., 1998, vol. 11, p. 945–49CrossRefGoogle Scholar
  11. 11.
    F.P. Incropera, D.P. DeWitt: Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, NY, 1981, p. 175Google Scholar
  12. 12.
    V. Randle, O. Engler: Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, CRC Press, New York, NY, 2000, p. 105–08Google Scholar
  13. 13.
    I. Baker, L. Liu, D. Mandal: Scripta Metall. Mater., 1995, vol. 32, p. 167–71CrossRefGoogle Scholar
  14. 14.
    I.V. Gervas’eva, D.P. Rodionov, B.K. Sokolov, Y.V. Khlebnikova, D.V. Dolgikh: Phys. Met. Metall., 2000, vol. 90, p. 295–301Google Scholar
  15. 15.
    H. Chang and I. Baker: Mater. Sci. Eng., 2007, in pressGoogle Scholar
  16. 16.
    P. Cotterill, P.R. Mould: Recrystallization and Grain Growth in Metals, John Wiley & Sons, New York, NY, 1976, p. 24Google Scholar
  17. 17.
    R.A. Vandermeer: Trans. TMS-AIME, 1967, vol. 239, p. 202Google Scholar
  18. 18.
    I.A. Gindin, V.K. Aksenov, I.F. Borisova, Y.D. Starodubov: Fiz. Metal. Metalloved., 1975, vol. 39, p. 88–93Google Scholar
  19. 19.
    I.A. Gindin, Y.D. Starodubov, V.I. Khotkevich: Fiz. Metal. Metalloved., 1976, vol. 24, p. 149Google Scholar
  20. 20.
    I.A. Gindin, Y.D. Starodubov, V.K. Aksenov: Ukr. Fiz. Zh., 1974, vol. 19, p. 1834Google Scholar
  21. 21.
    I.A. Gindin, M.B. Lazareva, V.M. Matsevit, Y.D. Starodubov: Phys. Met. Metall., 1969, vol. 28, p. 193–95Google Scholar
  22. 22.
    R. Nast, B. Obst, W. Goldacker, and W. Schauer: Mater. Res. Soc. Symp., 2001, vol. 659, paper II 1031Google Scholar
  23. 23.
    K. Lücke, K. Detert: Acta Metall., 1957, vol. 5, p. 628–37CrossRefGoogle Scholar
  24. 24.
    K. Lücke, O. Engler: Proc. ICAA3, Norwegian Institute of Technology, Trondheim, Norway, 1992, p. 439–52Google Scholar
  25. 25.
    A. Ridha, W. Hutchinson: Acta Metall., 1982, vol. 30, p. 1929–39CrossRefGoogle Scholar
  26. 26.
    D. Raabe: Acta Metall. Mater., 1995, vol. 43, p. 1023–28CrossRefGoogle Scholar
  27. 27.
    D. Raabe: Acta Mater., 1996, vol. 44, p. 937–51CrossRefGoogle Scholar
  28. 28.
    B.K. Sokolov, I.V. Gervas’eva, D.P. Rodionov, Y.V. Khlebnikova, L.R. Vladimirov, R.A. Schwartser: Phys. Met. Metall., 2005, vol. 99, p. 172–82Google Scholar
  29. 29.
    O. Daaland, C. Maurice, J. Driver, G.M. Raynaud, P. Lequeu, J. Strid, E. Nes: Proc. ICAA3, Norwegian Institute of Technology, Trondheim, Norway, 1992, p. 297–304Google Scholar
  30. 30.
    H. Weiland, J. Hirsch: Proc. ICOTOM 9, Special Issue of Texture and Microstructures, Avignon, France, 1991, p. 647–52Google Scholar
  31. 31.
    R.D. Doherty, I.K. Kashyap, S. Panchanadeeswaran: Acta Metall. Mater., 1993, vol. 41, p. 3029–53CrossRefGoogle Scholar
  32. 32.
    O. Daaland, E. Nes: Acta Mater., 1995, vol. 44, p. 1389CrossRefGoogle Scholar
  33. 33.
    C. Maurice, J.H. Driver: Acta Metall., 1993, vol. 41, p. 1653–64CrossRefGoogle Scholar

Copyright information

© THE MINERALS, METALS & MATERIALS SOCIETY and ASM INTERNATIONAL 2007

Authors and Affiliations

  1. 1.Thayer School of EngineeringDartmouth CollegeHanoverUSA
  2. 2.Materials Science for Continental TevesMorgantonUSA

Personalised recommendations